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Abstract
We revisit two concepts popularly used within the context
of classical planning, namely action justification and causal
links. While these concepts have come to underpin some of
the most popular notions of explanations in classical plan-
ning, these notions are still restricted to sequential plans.
To address this shortcoming, we propose a generalization of
these concepts that is applicable to state-action policies. We
introduce algorithms that can identify justified actions and
causal links contributed by such actions for policies gener-
ated for Fully Observable Non-Deterministic (FOND) plan-
ning problems. We also present an empirical evaluation that
demonstrates the computational characteristics of these algo-
rithms on standard FOND benchmarks.

1 Introduction
The question of whether an action is ‘required’ in a plan,
is one that has received considerable attention within clas-
sical planning (Fink and Yang 1993; Kambhampati 1995).
Roughly speaking, an action is generally understood to be
required (or more commonly referred to as justified) if it
contributes in some way to the achievement of the goal.
While the notion of justified actions was introduced as a way
to formalize the concept of minimal plans, the need to un-
derstand whether an action is truly required in a plan has be-
come one of the most widely studied explanatory queries in
planning (Seegebarth et al. 2012; Bercher et al. 2014). A re-
lated but distinct concept is that of a causal link (McAllester
and Rosenblitt 1991), where a causal link captures the ef-
fects contributed by an action to a plan (in the form of a
future precondition satisfied by that action). While a non-
justified action could have a causal link associated with it,
for planning problems without conditional-effects a well-
justified action must contribute a causal link. As such, causal
links have become the primary way of explaining why an ac-
tion is required (Seegebarth et al. 2012).

Even with their wide use, the definitions of these concepts
and related algorithms are closely tied to the fact that a so-
lution to a classical planning problem takes the form of a
sequence of actions. However, as we move to more general
planning formalisms we will need to adopt more complex
solution concepts. To the best of our knowledge, there has
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not been any formal efforts on mapping these concepts to
more general planning solutions such as policies or con-
trollers. This is unfortunate as the underlying phenomena
captured by these concepts are present in these more general
settings as well. After all, an action that was unnecessary in
a plan can’t automatically become required when one repre-
sents it using a policy.

In this paper, we will revisit the concept of justified ac-
tions, in particular well-justified actions, and propose a gen-
eralization that applies to stationary pure policies that map
factored states to actions. In the same vein, we will provide
a generalization of causal links which can be used as the
basis to explain the contributions made by a well-justified
action. Our choice to focus on state-action policies was pri-
marily motivated by their generality. Many of the other pop-
ular solution representation schemes, including partial state
policies, non-stationary policies, and controllers of various
forms like history-based controllers and full programmatic
controllers (which can support conditional statements and
iterations), can be mapped back into a state-action policy.
Thus one could directly use our methods for those solu-
tion forms as well. In keeping with the spirit of general-
ity, we decided to center our formulation around Fully Ob-
servable Non-Deterministic (FOND) planning problems, as
it makes the fewest assumptions about the underlying non-
determinism of the problem. As such, one could directly ap-
ply all the results and algorithms provided in this paper to re-
inforcement learning and stochastic planning problems (by
mapping it into a FOND problem where every action effect
with non-zero probability is mapped into a possible non-
deterministic outcome of the action). Our work represents
novel contributions to both the theoretical understanding of
non-deterministic action justifiability and explainability in
this richer execution setting. In fact, our work represents an
essential first step required for both formalizing and answer-
ing the explanatory query, “Why is an action a required in
state s per the policy?”.

To summarize, the main contributions of the paper are as
follows:
1. We propose a generalization of well-justified actions that

apply to policies. We additionally propose an algorithm
to detect whether a given state and action pair is justified
for a given FOND policy.

2. We present a generalization of causal links that applies to



policies and also develop an algorithm to extract causal
chains contributed by a well-justified action. To the best
of our knowledge, this represents the first formalization
of the term causal links within the context of policies in
general.

3. Finally, we present an evaluation of both algorithms on
policies generated for some standard FOND benchmarks.

2 Background
We will be focusing on cases where the planning problem
may be represented as a fully observable non-deterministic
planning problem (FOND). Such models may be repre-
sented in declarative form using PDDL variants that use
‘oneof’ effects (Bryce and Buffet 2008). Mathematically, we
expect a FOND model to be represented by a tuple of the
form M = ⟨F,A, I,G⟩, where F is a set of propositional
fluents that is used to define the state space for the planning
problem (S = 2F ); A is the set of actions available to the
agent; I ⊆ F is the initial state from which the agent needs
to try achieving the goal; and G ⊆ F is the goal specifica-
tion and any state that satisfies the goal specification (i.e.,
G ⊆ s) is considered to be a valid goal state. To simplify
the discussion, without loss of generality, we will assume
G is a singleton set consisting of a single goal atom. Over-
loading the notation a bit, we will also use the symbol G
to denote the goal atom. Each action a ∈ A is further de-
fied by a tuple a = ⟨prea,E(a)⟩. In this action definition,
prea stands for the preconditions for executing the action
and E(a) the set of possible effects. In this paper, we will
exclusively focus on positive conjunctive preconditions, as
such we will represent each preconditions as a subset of flu-
ents. E(a) = {⟨add1

a, del
1
a⟩, ...., ⟨add

k
a, del

k
a⟩} represents

the set of mutually exclusive effects that could occur as the
result of executing the action a and add i

a ⊆ F and del ia ⊆ F
correspond to the add and delete effect corresponding to the
ith effect. With the action definitions in place we can also
define the set of transitions possible under this action defini-
tion (denoted as T). In particular, we will define a transition
⟨s1, a, s2⟩ to be possible (denoted as ⟨s1, a, s2⟩ ∈ T) if

prea ⊆ s1 and ∃j, such that

⟨add j
a, del

j
a⟩ ∈ E(a), s2 = (s1 \ del ja) ∪ add j

a

Throughout this paper, we will focus on cases where non-
determinism is considered to be fair, i.e., for every non-
deterministic action every possible effect is guaranteed to
occur infinitely often if the action is executed infinitely of-
ten. We can also use the same formalism to capture deter-
ministic domains by restricting ourselves to cases where
the effect set for each action is a singleton set. This paper
will only focus on cases where action effects are free from
conditional-effects.

A solution to a FOND problem takes the form of a policy
that maps a state to an action, usually denoted by a function
π : S → A ∪ {a∅}, where a∅ is an artificial empty action
assigned to states that are either not supported by the policy
or are goal states (with empty preconditions and actions).
In this paper, we will focus on deterministic and stationary
policies, where the deterministic term refers to the fact that

the policies map a state to a single action and the stationarity
refers to the fact that the mapping from state to action does
not change with time. Additionally, for notational simplicity
we will sometimes use set notations to capture the policy.
Specifically, we will say ⟨si, ai⟩ ∈ π, if π(si) = ai. Addi-
tionally, we will refer to any state action pair ⟨si, ai⟩ ∈ π as
a policy step.

A concept that will be central to the main of the tech-
niques are traces supported by a given policy. We will
refer to a state action state sequence of the form τ =
⟨s1, a1, ..., sk⟩ as a trace supported by a policy π if for every
si, where i ̸= k, we have π(si) = ai, ⟨si, ai, si+1⟩ ∈ T.
A trace is said to be a goal achieving trace if G ⊆ sk and
a state state sj is said to be reachable from si if there exists
a trace of the form τ = ⟨si, ai, ..., aj , sj⟩. We will also re-
fer to the sequence of action that appears in the trace, as the
action sequence corresponding to the given trace.

In terms of a valid policy for a FOND problem, the litera-
ture generally differentiates between weak solutions, strong
and strong-cyclic solutions (Cimatti et al. 2003). Weak so-
lutions are policies such that there exists at least one goal-
achieving trace from the initial state. A policy is said to be
strong-cyclic if the goal is reachable from all states reach-
able from the initial state. Finally, a policy is said to be a
strong solution if we can again guarantee that goal is reach-
able from all states reachable from the initial state, but ad-
ditionally, now we require that a state can never be repeated
in any given goal-reaching trace. However, in this paper we
will not differentiate between these specific classes of solu-
tions and all methods studied here are equally valid for all
policy classes.

While many flavors of action justification has been stud-
ied in the literature (Fink and Yang 1993), this paper will fo-
cus exclusively on Well-Justified actions. An action is said
to be well-justified if the removal of that action will cause the
resultant plan to be invalid. A plan is said to be well-justified
if every action in the plan is well-justified. Our choice of
well-justified actions was motivated by the fact that it corre-
sponded to one of the most widely used within the explana-
tion literature. Section 7 provides a discussion of the various
instances of the use of these explanation types within classi-
cal planning.

Next let us take a quick look at causal links, particularly
as applied to totally ordered plans. Specifically a totally or-
dered plan P can be represented as a sequence of the form
P = ⟨a:1, ..., a′:j⟩, where each step of the plan (a:i) is cap-
tured using the action label (a) and the step count (i). Now a
causal link is said to exist between two steps a:i and a′:k if
there exists a precondition for the action a′ that is provided
by the add effect of a. The causal link between the action is
denoted as a:i →p a′:j, where p is the fact being ‘produced’
by action a:i and being ‘consumed’ by a′:j. Each causal link
is assumed to be not threatened by any other action between
the two steps. However, attaching a causal link to an action
doesn’t mean it is well-justified. In fact one could associate
a causal link to a redundant action if its effect corresponds
to a future precondition, even if a future action could also
satisfy that effect or if that fact is already true in the cur-
rent state. So we will focus on a stronger notion, that we



will term required causal links, which will additionally re-
quire that the causal link contributed by the current action
cannot have been contributed by any action before the con-
sumer action (including actions prior to the producer action).
This is equivalent to the notion of exhaustive causal links
as discussed by Kambhampati (1994). Since in this paper,
one of our focus will be on identifying a single causal link
contributed by the action, we will restrict our attention to
minimal-length required causal links, i.e., ones where the
consumer is the closest to the producer action per their posi-
tion in the plan.

Causal Chain Explanations As per Seegebarth
et al. (2012), causal chain explanations are designed
to address explanatory queries of the type

“Why is the plan step ‘a:o’ “necessary” for π to constitute a
solution?”

Here the explanation takes the form of a sequence of causal
links that originates at the plan step in question and termi-
nates at the goal. We will denote a causal link chain expla-
nation as

a:o → fi → ... → fk,

where each link of the form fi → fi+1 correspond to a
causal link and fk is part of the goal. Specifically, for each
link of the form fi → fi+1 there would exist a causal link
of the form a:i →fi+1 a′:i+ 1, where fi is part of the pre-
condition for the action a. In this paper, we will see how our
generalized notions of causal links can be leveraged to also
generate a generalized causal link explanation.

3 Motivating Example
As a running example throughout the paper consider the pol-
icy generated by a futuristic daily planner that takes into ac-
count all the possible contingencies of the day and comes up
with a policy that will get you to the office in time. The pol-
icy starts with you at home and as the first action, the daily
planner recommends you to start the day by placing a call to
your local baker for a dozen of the day’s special donuts. At
the end of this action, you will find yourself at home having
ordered a dozen of maple-glazed donuts or a dozen straw-
berry sprinkle donuts with a coupon for a free milkshake.
Now based on the outcome of this action the policy now
requires you to take different routes to the office, with dif-
ferent potential branching points owing to the various non-
determinisms in the world. Figure 1 presents a high-level
overview of this policy with its various contingencies. Re-
gardless of your personal feelings toward fried pastry, you
may be confused as to why the planner might be asking you
to take the time to buy donuts when you should be trying to
get as early as possible to the office parking lot to get a free
parking spot. Looking at the immediate actions that follow,
one may be forgiven to think that the action is just a ran-
dom action thrown into a seemingly bloated plan created by
a faulty planner. But as we will see throughout the rest of
the paper, this action is in fact required in this policy in so
far as it is required for the goal achievement. Additionally,
you may not have the patience to go through each possible
trace corresponding to the multitude of ways the world may

evolve and how they may feed into your goal of getting to
your office. Ideally, you would want to be able to leverage
mechanisms like causal link explanations that demonstrate
how the action contributes to the eventual goal.

4 Generalizing Well-Justified Actions
As discussed in the motivational example, our problem starts
with a user of a planning system being presented with a pol-
icy. Once the policy is provided, the user may identify some
policy step whose role they are unsure of. Thus the user may
turn to the system to understand why that step is required in
the policy. Once such a step is presented, the first order of
business is to identify whether the step is in fact required in
the policy. We will say that a step is required in the policy if
it is well-justified. Repeating the definition in the context of
sequential plans, one could informally say that an action ‘a’
is well-justified at state ‘s’ if without the execution of action
‘a’ at state ‘s’ the goal could not have been achieved by the
rest of the policy. However, this is not an operationalizable
description of the property as by the very nature of policy as
a solution concept, the execution of an action is necessary
as the change of the state is needed to enable the execution
of the rest of the policy. While in the context of sequential
plans, one could meaningfully talk about removing an ac-
tion from the sequence and then testing whether the remain-
ing plan is valid or not, it is unclear how one could perform
such transformations over a policy. At the same time, it is
worth remembering that the concept of whether or not an
action is well-justified at a particular policy step is still a
relevant question to ask. After all, it would make no sense
to claim that one could make a non-well-justified sequential
plan well-justified by just mapping it to a policy. In this pa-
per, we will try to propose a formal definition of this concept
that leverages the fact that from any given state, one could
characterize how the policy contributes to the goal by con-
sidering all the goal-achieving traces.
Definition 1. An action ‘a’ is said to be required (or equiv-
alently well-justified) at a state ‘s’ for a policy ’π’ to
achieve a goal G under a given model M, if for every ev-
ery action sequence corresponding to a goal-reaching trace
originating from state ’s’, removal of actions correspond-
ing to the policy step in question will result in an invalid
sequence, in so far that there exists no valid trace possible
under M that corresponds to that sequence.

In our example discussed above, the action
‘order donuts’ will be required if each of it out-
come contributes at least one useful fact that may be
needed by some future actions. It is easy to see why the
above definition is a possible generalization of the existing
notions of well-justified actions in classical planning. In
fact we can see that when one maps a plan into a policy,
the well-justified actions of the original plan aligns with
well-justified actions for the policy. Specifically, we can
state that
Proposition 1. Let P = ⟨a1:1, ..., ak:n⟩ be a valid plan
for a deterministic model M and π a policy such that, we
will have ⟨si, aj :i⟩ ∈ π when aj :i is part of P (say corre-
sponding to step i) and si can be obtained by executing plan



Figure 1: A simple overview of the daily planner policy, which highlights the actions that are determined by the policy along
with some of the non-deterministic effects caused by the action.

prefix of length i − 1 at the initial state I . Any state action
pair ⟨si, aj :i⟩ ∈ π, is well-justified per Definition 1 if and
only if the corresponding step in plan P is well-justified per
the definition provided by Fink and Yang (1993) (in that the
removal of that plan step results in an invalid solution).

The proof for the proposition is trivial given the fact that
for a deterministic domain, the policy π can only generate a
single goal reaching trace. Additionally, the action sequence
corresponding to that trace is the same as the original plan P .
Thus an action being well-justified in the policy means that
its removal from the trace action sequence and by extension
P , renders it invalid. Thus establishing the ‘if’ part of the
statement and we can employ a similar line of reasoning to
establish the ‘only if’ part of the statement.

However, it is worth noting that the notion of an action
being required is an extremely strong condition, and there
could very well be goal-reaching policies where none of the
actions are required (a fact that is true for “well-justified”
actions in classical planning as well). One could also look
at weaker notions of how an action contributes to a goal (for
example if the action ‘a’ is well-justified in at least one of the
traces or ‘a’ may be well-justified for some subset of traces),
however, that also means that one could in principle build a
valid weak solution with the rest of the policy while ignoring
the current action. We will leave the investigation of such
weaker forms of justifications and their correspondence to
existing notions of justifications for future work.

4.1 Identifying Well-Justified Actions
To identify whether an action is required at a state, we will
leverage a compilation based method that will generate a
modified deterministic planning problem, whose unsolvabil-
ity will help us detect whether an action is required at a given
policy step.

The compilation will form an updated planning model
that will only allow actions allowed under a given policy.
Additionally the compilation will maintain two copies of
each fluent, one of which we will use to detect whether an
action contributes to a future precondition.

For a given model M = ⟨F,A, I,G⟩ and a query regard-
ing the use of action a in state s for policy π, we will be
creating a new model

MJ
(π,⟨s,a⟩) = ⟨Fϕ, AJ

(π,⟨s,a⟩), I
J
(π,⟨s,a⟩), G⟩.

In regards to the duplicate fluents, the new fluent set Fϕ,
now contains two copies for each fluent f ∈ F that was part
of the original problem definition. We will use the label f to
capture one of the copy and denote the other copy with the
notation fϕ. We will maintain the mapping between the two
copies using the function ϕ : f 7→ fϕ and also overload the
function to also apply to sets, i.e, Fϕ = F ∪ ϕ(F )

In regards to the actions, AJ
(π,⟨s,a⟩) represents the new set

of actions. In particular, the new model will have an action
for each state action pair that is part of the policy in question,
i.e.,

AJ
(π,⟨s,a⟩) = {asji | ⟨sj , ai⟩ ∈ π \ {⟨s, a⟩}} ∪ {aJ⟨s,a⟩}

. Where an action a
sj
i ∈ Aπ

⟨s,a⟩ will encode the fact that this
copy of the action ai is meant to be executed only in state sj
and may also have preconditions that need only be a subset
of the fluents that are true in sj . The former is captured in
terms of the fluents belonging to the set ϕ(F ) and the lat-
ter by using fluents from the original set F . Similarly, action
effects will now include copies of the original effects of the
action in terms of both fluent sets, thereby allowing us to
capture both the action’s capability of allowing the contin-
ued execution of the policy while allowing us to maintain a
separate accounting of how the action contributes to the pre-
conditions of future actions. On the other hand the definition
of action copy aJ⟨s,a⟩, corresponding to the query state action
pair, is similar except that the action effect only includes a
copy corresponding to the set ϕ(F ). This means, that the ac-
tion can only contribute to the policy state component of the
precondition of the future actions.

More formally, the action will be defined as

a
sj
i = ⟨pre

a
sj
i
,E(asji )⟩,

such that

pre
a
sj
i

= ϕ(sj) ∪ preai
, and

E(asji ) = {⟨ϕ(addm
ai
) ∪ addm

ai
, ϕ(delmai

) ∪ delmai
⟩ |

⟨addm
ai
, delmai

⟩ ∈ E(ai)}.

Similarly aJ⟨s,a⟩ = ⟨preaJ
⟨s,a⟩

,E(aJ⟨s,a⟩)⟩, such that

preaJ
⟨s,a⟩

= ϕ(s) ∪ prea



E(aJ⟨s,a⟩) = {⟨ϕ(addm
a ), ϕ(delma )⟩ |

⟨addm
a , delma ⟩ ∈ E(a)}

One point to note here is that to effectively constrain ap-
plication of actions to specific states in the policy, we have
to not only consider facts that are true in the state but also
the ones that are false. We can still use our positive precon-
dition formulation to support this by using the standard com-
pilation technique to compile away negative preconditions.
Since this is a standard technique, we will not include this as
part of our formalization, but the reader is advised to keep
in mind that when we say ϕ(s) is part of the precondition it
also includes new positive fluents that correspond to the flu-
ents that may be false in state s (with the necessary changes
made to the effects as well).

Finally, the new initial state corresponds to the state s part
of the query and contains fluents from both the original flu-
ent set and the new copy fluent set and the goal is the same
as the original problem.

IJ(π,⟨s,a⟩) = s ∪ ϕ(s).

Now the resultant model MJ
(π,⟨s,a⟩) is still a non-

deterministic planning domain. However, for the purposes
of identifying whether an action is well-justified we only
need to consider a determinization of this model. In particu-
lar, we will consider an all outcome determinization (Yoon,
Fern, and Givan 2007) of the model D(MJ

(π,⟨s,a⟩)). Ef-
fectively the determinization will create a separate deter-
ministic action for each outcome of the action. So in the
case of our running example, now there will be two dif-
ferent copies for the order donuts action. One whose ef-
fect only makes has maple glazed donuts true and the
other one which makes has strawberry sprinkle donuts
and has milkshake coupon. Given the nature of the de-
terminization, the set of goal-reaching traces for the model
MJ

(π,⟨s,a⟩) would exactly correspond to the set of valid plans
for the deterministic model D(MJ

(π,⟨s,a⟩)). This brings us to
the proposition

Proposition 2. An action ‘a’ is required at a state ‘s’ for a
policy ‘π’ (where requirement is defined as per Definition 1),
if and only if the modified planning problem D(MJ

(π,⟨s,a⟩))

is unsolvable.

Proof Sketch. To show the validity the statement, it is
worth remembering that by construction every valid plan in
D(MJ

(π,⟨s,a⟩)) corresponds to a possible trace for the policy
by π. Additionally through the way we specify aJ⟨s,a⟩, we
have essentially removed the ability to the step in question to
support future preconditions of future actions specified with
fluents F . If in fact the action was well-justified then the
removal of the step from every trace would render them in-
valid and by extension our construction of D(MJ

(π,⟨s,a⟩)) for
a well-justified policy state action pair would render every
possible valid plan invalid. This establishes the ‘if’ part of
the statement. Similarly unsolvability of the planning prob-
lem points to the fact that the removal of the step renders

every valid plan invalid and by extension each possible ac-
tion sequence corresponding to the possible goal reaching
traces. Thus establishing the fact the state action pair was
well-justified per Definition 1 and hence proving the only if
part of the statement.

5 Generalizing Required Causal Links
With the question of how one could detect when an ac-
tion may be contributing to the goal solved, the next obvi-
ous question to ask would be to see how one could capture
the contributions made by the action. As such, the next con-
cept we are interested in generalizing is that of causal links
contributed by the action. One obvious strategy could be to
just enumerate all possible goal-reaching traces and present
a causal link contributed by the action in each trace. How-
ever, in this paper our primary interest would be in devel-
oping a method that summarizes the actions’ contribution to
the policy as a whole. The conciseness of our proposed gen-
eralization also makes it better suited for applications like
explanations, since any techniques that might try to iterate
over possible traces could overwhelm users even in the sim-
plest domains. Also it is worth remembering that even a non-
well-justified action can contribute a causal link (depending
on how one assigns the causal link), so our focus will be
in identifying and generalizing required causal links as dis-
cussed earlier.

Our abstract representation will leverage necessary sub-
goals made feasible by the execution of the action. In par-
ticular, for grounding the concept of a necessary subgoal
we will build on the notion of a policy landmark intro-
duced in (Sreedharan, Srivastava, and Kambhampati 2020),
which defined policy landmarks as being facts and their cor-
responding ordering that needs to be satisfied by every valid
goal reaching trace that can be sampled from the initial state.
In our case, we will use a more restricted version of policy
landmarks, one that additionally requires that the landmarks
we focus on are required as preconditions for different ac-
tions or in the goal. We will refer to such policy landmarks
as causal policy landmarks. Additionally we will only focus
on traces originating from the policy state s in question. We
will capture such a causal policy landmark set with the nota-
tion L = ⟨L,≺⟩. Here L ⊆ F is the set of possible landmark
facts and ≺ defines a partial ordering over these facts, such
that f1 ≺ f2 captures the fact that f1 should appear before
f2.

By focusing on causal policy landmarks, we ef-
fectively filter out any facts that just appear as side-
effects of some actions and only focus on the facts
used by actions in the policy. In the case of our
daily planner domain, a subgoal made possible by
the action would be security-guard-bribed
and our causal link would be represented as
⟨I,Order-donuts⟩ →security-guard-bribed.
This is because Carl can be bribed only with map glazed
donuts, while Jake is happy to take a strawberry sprinkle
donut provided you also give him a cup of coffee. More
formally

Definition 2. For an action ‘a’ required at state ‘s’ for a



policy ’π’ under a given model M and a causal policy land-
mark set L, a fact f ∈ L is said to be the proximal re-
quired subgoal if f cannot be achieved in any goal reaching
trace once action a is removed and there exist no fluent f ′

such that f ′ ≺ f that satisfies the same requirement. Addi-
tionally, we will refer to f as constituting a minimal-length
generalized required causal link contributed by the action,
represented as ⟨s, a⟩ → f .

This brings us to the first property regarding generalized
required causal link, namely there always exist one for a
well-justified action.
Proposition 3. For an action ‘a’ required at state ‘s’ for
a policy ’π’ under a given model M and a causal policy
landmark set L, there must exist a fluent f ∈ L such that
⟨s, a⟩ → f .

This result trivially follows from the fact that the goal flu-
ent is part of the causal landmarks and we know that the
removal of the action leads to goal not being achievable any-
more. So if all the landmarks that are preceding the goal in
the landmark set fail, the goals will satisfy the requirements
outlined in Definition 2.

5.1 Identifying Proximal Required Subgoal
We will again be leveraging a compilation based method as
in the previous section. In particular for a given model M =
⟨F,A, I,G⟩ and a query regarding the use of action a in state
s for policy π, we will be creating a new model

MC
(π,⟨s,a⟩) = ⟨Fϕ, AC

(π,⟨s,a⟩), I
C
(π,⟨s,a⟩), G⟩

.
Where Fϕ and IC(π,⟨s,a⟩) stays the same as the previous

compilation for MJ
(π,⟨s,a⟩) (with IC(π,⟨s,a⟩) = IJ(π,⟨s,a⟩)). Un-

like MJ
(π,⟨s,a⟩), for the actions in this setting we will not re-

move the effects defined over F from the action correspond-
ing to the policy state action pair being queried about, i.e.,

AC
(π,⟨s,a⟩) = {asji | ⟨sj , ai⟩ ∈ π},

where each a
sj
i is defined as before.

As before, we will be focusing an all outcome deter-
minization of the model D(MC

(π,⟨s,a⟩)) and use it to iden-
tify the causal landmark set (Keyder, Richter, and Helmert
2010). Causal landmarks are landmarks that always appear
in the precondition of an action. However, for our purposes,
we can’t directly use the causal landmark set generated from
D(Mπ

⟨s,a⟩) as the preconditions of the actions in the model
also contain state descriptions. As such the landmarks di-
rectly calculated from D(Mπ

⟨s,a⟩) may contain facts that are
not part of any action preconditions. Our use of a distinct
set of fluents to capture the state and preconditions allows
us to filter out such landmarks. Specifically, let L = ⟨L,≺⟩
be the landmark set, where L ⊆ Fϕ is the set of landmark
fluents and ≺ is the ordering between the fluents (we will
specifically focus on sound orderings derived from delete
relaxations of the problem (Richter, Helmert, and West-
phal 2008)), then we will use the set L′ = ⟨L′,≺⟩, where
L′ = L \ ϕ(F ).

Proposition 4. The landmark set L′ for the model
D(Mπ

⟨s,a⟩) corresponds to the causal policy landmark set
for policy π.

We can establish this proof by following a slightly mod-
ified version of the proof described in (Sreedharan, Srivas-
tava, and Kambhampati 2020). It’s also worth noting that we
are guaranteed that G ⊆ L′

To generate our required subgoal, we need to identify
the landmarks whose achievement actually requires the ex-
ecution of the action in question (a) at state s. To identify
whether a landmark f ∈ L requires the action, we will be us-
ing a formulation similar to the one we used to test whether
the policy step was well-justified. Specifically we will use
the model MJ

(π,⟨s,a⟩)→f defined as

MJ
(π,⟨s,a⟩)→f ⟨F

ϕ, AJ
(π,⟨s,a⟩), I

J
(π,⟨s,a⟩), Gf ⟩.

The difference from the original formulation MJ
(π,⟨s,a⟩), be-

ing the goal which is now set as Gf = {f}. Similar to the
earlier formulation we are trying to see if the removal of F
copy of the action effects results in the landmark being un-
reachable. More formally we can state,
Proposition 5. A causal policy landmark f ∈ L is said to be
the proximal required subgoal ( per Definition 2), if and only
if the modified planning problem D(Mπ

⟨s,a⟩,→f ) is unsolv-
able and there exists no f ′ ∈ L, f ′ ≺ f and D(Mπ

⟨s,a⟩,→f ′)

is unsolvable.
The proof for this proposition is symmetric to the one

used for Proposition 2.

5.2 Relationship to Required Causal Links
Now to see how these extracted relationship compare against
the causal links, we will constrain ourselves to deterministic
settings, where from any state, there can at most be one goal-
achieving trace. We will assume the same policy structure.
Now we will show that every valid minimal-length general-
ized required causal link (per Definition 2) corresponds to
a minimal-length required causal link for the corresponding
action in the original plan and vice-versa.
Proposition 6. Let P = ⟨a1:1, ..., ak:n⟩ be a valid plan
for a deterministic model M and π the corresponding pol-
icy representation, let a:i be a well justified step in P and
let si, a be the corresponding well-justified policy step in π,
then we have
1. if a:i →f a′:j is a minimal-length required causal link

for in P , then there must exist a a minimal-length gen-
eralized required causal link of the form ⟨si, a⟩ → f for
π.

2. Similarly, if ⟨si, a⟩ → f is a minimal-length general-
ized required causal link, then there must exist a minimal-
length required causal link for P of the form a:i →f a′:j

Proof Sketch. We can prove this statement by leveraging the
fact that the causal policy landmarks of π consists of just
the preconditions (along with the goal) of the actions in P
and the ordering corresponds to the ordering of the actions
in the totally-ordered plan. Now with that fact in mind, we



can see that if there is a required subgoal is found, it is a
precondition of a future action (a′ : j) and the effects of
the current action is required for satisfying that precondition
and no action between a : i and a′ : j can contribute this
fact (this follows from the Definition 2). Thus this must be
an effect of the action a, thus establishing the fact that a :
i →f a : j must be a required causal link. The fact that it is
of minimal-length required causal link comes from the fact
that there were no required subgoals that preceded f (again
a requirement from Definition 2). This proves the first part
of the proposition, the second part of the proposition can be
established by inverting the arguments and thus proving the
statement as a whole

5.3 Generating Causal Link Chain Explanations
While the above approach identifies the first causal link
contributed by the action, the most common explanation for
a required action takes the form of a chain of causal links
that extends to the goal. To provide such an explanation we
have to not only identify a single landmark that is required,
but ideally, we would like to present a chain of facts each
requiring the last fact to be achieved. Note that here we can’t
just rely on the landmark ordering as it may also encode
the relationship being enforced by the state part of the pre-
conditions. So we will build a variation of Mπ

⟨s,a⟩ denoted

as M̂π
⟨s,a⟩,f1→f2

that will try to identify such requirement
relationship between landmarks. Specifically, we will have
M̂π

⟨s,a⟩,f1→f2
= ⟨Fπ

⟨s,a⟩, Â
π
⟨s,a⟩,f1→f2

, Iπ⟨s,a⟩, {f2}⟩. Now

the goal is to achieve f2, and we will form Âπ
⟨s,a⟩,f1→f2

from Aπ
⟨s,a⟩ by removing f1 from all add effects while

preserving ϕ(f1). More formally, let as
′

j ∈ Aπ
⟨s,a⟩, then we

have a correspond action âs
′

j,f1→f2
∈ Âπ

⟨s,a⟩,f1→f2
, such that

E(âs′j,f1→f2
) = {⟨adds′,m

aj
\ f1, del

s′,m
aj

\ f1⟩ |
⟨adds′,m

aj
, dels

′,m
aj

⟩ ∈ E(as′j )}

Since the requirement ordering will be a subset of the
landmark ordering, we will only need to run this test be-
tween landmarks when there already exists an ordering. We
will denote this requirement ordering with the notation ≺R.

Finally, to generate the explanation chain itself, we will
iterate over a topological sort over L′ and find the first land-
mark f1 that requires action a and build a chain consisting
of a set of totally ordered landmarks over the requirement
ordering that terminates with the goal G. More formally
Definition 3. A chain of facts E = ⟨f1, ..., fj , ..., fn⟩, such
that all fi ∈ F is considered a valid explanation for the
query ⟨s, a, π,M⟩, if
1. Every fact fi in E is a causal policy landmark for the

policy π and model M
2. f1 requires the action ‘a’ to be executed in state s
3. For all pairs of landmarks, fi and fi+1, we have fi ≺R

fi+1

4. Finally, we have fn = G.
The above definition presents a general description for a

valid explanation. Note that the set of valid explanation cov-

ered by the above definition may not be equivalent in how
effective the user may find them to be. As such one may
need to use additional criteria to choose an explanation from
this set of valid explanations. Choosing a landmark with the
least number of preceding facts as the first element in the
chain being one such possible criteria.

In our running example, the full causal link chain would
be

⟨I,order-donuts⟩ →
security-guard-bribed →

parked-at-executive-parking-spot→
in-executive-elevator→ at-office.

Where each relation captured by → in the above sequence
now correspond to a generalized causal link. This causal
link chain can then be used to generate the exact explana-
tory message that can be provided to the user. An example
explanatory message that can be generated from the above
causal link chain may be

The step is needed to achieve the fact ‘security guard
bribed’, which is needed to achieve the fact parked ‘at

executive parking spot’, which is needed to achieve the fact
‘in executive elevator’, which is required to achieve the

goal ‘at office’.

Relationship to Causal Link Explanations Now to see
how these explanations compare against the causal chains,
we will constrain ourselves to deterministic settings, where
every action has a single outcome. Thus from any state, there
can at most be one goal-achieving trace. We will assume the
same policy structure. Now we will show that every valid
explanation (per Supplementary Definition 3) corresponds
to the fact that are part of a causal chain explanation and
every causal chain explanation correspond to an explanation
of the form described in Supplementary Definition 3.
Proposition 7. For a given causal chain explanation ⟨s1 :
a1 →f1 s2 : a2, ...., sm : am →g sg : a∅⟩, the chain E =
⟨f1, ..., g⟩ is a valid explanation for the requirement query
⟨s1, a1, π,M⟩, when M is completely deterministic.

Proof Sketch. To see why this is true, we can see that all
three requirements of a valid explanation provided in Defi-
nition 3 are met here. (1.) directly holds as all the facts are
causal policy landmarks (they all appear in the precondition
and there is only one path). (2.) holds automatically as this is
a fact that is contributed by the action and per our definition
of causal link explanation no action between the producer
and consumer would generate the fact f1. Thus f1 would
cause Mπ

⟨s,a⟩,→f1
to be unsolvable as model will disallow

any use of actions after s2 to be used. (3.) holds because the
causal links are preconditions and as such removal of them
causes the subsequent fact to be unachievable at the subse-
quent step.

Similarly, we can also show that
Proposition 8. For any valid explanation chain E =
⟨f1, ..., g⟩ for the query ⟨s1, a1, π,M⟩ (where M is com-
pletely deterministic), there exist a causal chain explanation
of the form ⟨s1 : a1 →f1 s2 : a2, ...., sm : am →g sg : a∅⟩,
for some action set {a2, ..., am}.



The proof for this proposition follows a similar line of
argument to the one described in Proposition 6.

Remark: While a well-justified action always contribute
a required causal link, it need not be part of a causal link
chain that terminates at goal. Guaranteeing this requires us
to look at stronger notions of action justification, which we
hope to study as future work. It is also worth noting that
most existing landmark generation methods identify land-
marks from some relaxation of the original planning model
(usually delete-relaxed models). Under these conditions, the
extracted causal link would still remain a required subgoal,
in that the policy step was needed to compute it. However,
the subgoal need not be a proximal required subgoal any-
more.

6 Empirical Evaluation
As a way to provide a computational evaluation of the ex-
planation generation methods discussed in this paper, we ran
our method on several standard FOND benchmarks (Muise
2018). Our evaluation has two primary goals: to identify the
frequency with which well-justified actions occur in poli-
cies generated for these planners and to evaluate the compu-
tational requirements. The first would, in fact, also provide
insights into the kind of policies that are generated by the
state-of-the-art planner. The second allows us to identify the
time taken to both determine whether an action is required
and to generate a required causal link. The results reported
here are from experiments run on a 12 core Intel(R) Xeon(R)
CPU with an E5-2643 v3@3.40GHz processor and a 64 GB
RAM.

For generating the policies, we used the PRP planner
(Muise, McIlraith, and Beck 2012) which by default pro-
duces a policy defined over partial states. We generate the
full state policy by executing this policy defined over par-
tial states from the initial state (favoring actions with lower
distance when multiple partial states match).

For generating the landmarks, we made use of the imple-
mentation of (Keyder, Richter, and Helmert 2010) provided
by the Fast Downward planning system (Helmert 2006). Ad-
ditionally, we used the FastDownward planner to test the un-
solvability of the various subgoals. In particular, used the
LAMA 2011 IPC configuration (–alias seq-sat-lama-2011).
Table 1 provides an overview of the various statistics we cal-
culated from the experiments. The experiments were run on
five domains. For each domain, we selected the first fifteen
problems from PRP FOND benchmark list and then selected
the ones that were solvable by PRP planner within a time
limit of 30 minutes (the exact problems are provided in the
supplementary package).

One of the first things to note is that, for all domains ex-
cept triangle tireworld not all non-trivial state-action pairs
were well-justified. By non-trivial state-action pairs, we re-
fer to any reachable state action pair where the state didn’t
already satisfy the goal. The presence of such non-justified
state-action pairs refers to the fact that there is possible space
for PRP planners to improve the quality of the policies gen-
erated by taking into account notions of justified actions and
by extension policy minimality. For most domains, the gen-

eration time for the causal links was quite within the lim-
its to be applicable for systems that require quick response
time. In fact for all domains except Triangle-tireworld the
average time taken for explanations generated were less than
five seconds. Even in the case of Triangle-tireworld, the time
taken was mostly due to the last four problems. In fact, the
average time taken to establish whether an action is required
for the first five problems was 6.7 seconds. On further analy-
ses, the main limiting factor seems to the number of fluents.
For the largest problem instance we tested with in triangle-
tireworld there were close to four hundred thousand fluents.
While Zenotravel domain had much larger policies, their flu-
ent numbers were not close to the count in triangle-tireworld
(largest count was still less than three thousand). In future,
we hope to leverage approximations (including approximate
unsolvability tests), which would be able to handle such
large fluent counts. Please note that in the particular compi-
lation considered in the evaluation, we made no distinction
between static predicates and fluents. This means that our
compilation considers more fluents than what was required.
So, we expect to improve upon the existing results by con-
sidering more efficient implementations.

7 Related Work
The concept of justified actions and plans has a long his-
tory within automated planning literature, with some of the
earliest works being introduced in the context of abstrac-
tion (cf. (Yang and Tenenberg 1990)). Since then, many fla-
vors of action justification have been studied in the literature
including Backward Justification, Greedy Justification and
Perfect Justification, with perfectly justified plans present-
ing the strongest notion. In fact, establishing whether a plan
is perfectly justified is NP-complete even for totally ordered
plan, as in the worst case you have to check if any subset of
actions are redundant together. However, it is worth noting
that even within the same justification class the complexity
of establishing justification could differ with solution repre-
sentation. Policy cases notwithstanding, the complexity of
establishing whether an action is required within a partially
ordered plan is NP-complete (Olz and Bercher 2019), while
it’s polynomial for totally-ordered plans.

Causal links were first introduced into the mainstream
planning vocabulary by McAllester and Rosenblitt (1991)
(however similar concepts existed before as in the use of the
term GOST by Tate (1977)). The primary use of causal links
remains in the context of partial-order or plan-space plan-
ning. However, the intuitive nature of these data-structures
have lent themselves to their use in numerous applications
within the context of plan explanations. A common one we
saw was the use of causal link chains to explain the contri-
butions made by an action to the plan. However, the history
of causal chain explanation starts much earlier than their lat-
est incarnation in (Seegebarth et al. 2012). One of the ear-
liest works to look at a similar form of information was the
PRIAR system (Kambhampati 1991) that introduced the no-
tion of validation structures that encodes such information in
the form of plan annotations. Validation structures were pro-
posed as a correctness explanation that could then be used
to guide various tasks including plan retrieval, refitting, and



Domains Problem Count Average % of Non-
Trivial Well-Justified
State-action Pairs

Average Time Taken
to Establish Action is
Well-Justified (S)

Average Time Taken
to Identify Causal
Link (S)

Elevator 15 99.8% 1.34 ± 0.17 2.76 ± 0.36
Exploding
Blocksworld

8 75.25% 2.08 ± 0.84 3.15 ± 0.17

Tireworld 15 94.4% 1.31 ± 0.15 2.64 ± 0.31
Zenotravel 14 98.19% 2.34 ± 0.67 4.85 ± 0.31
Triangle Tire-
World

9 100% 81.47 ± 78.93 180.53 ± 177.144

Table 1: The evaluation of the proposed method on standard FOND benchmarks. Here non-trivial state action pair refers to state
action pairs where the policy didn’t assign the a∅ goal action.

modification (Kambhampati 1990). Another early work that
looked at the introduction of similar information was that of
(Veloso 1992), which looked at performing regression-based
analyses to determine initial state conditions relevant to the
goal. In more recent work, such information was also used
by (Chakraborti et al. 2019) to provide an overview of the
plan as a whole. (Bryce et al. 2017) also looks at similar in-
formation to visualize plans by visualizing causal link chains
in the style of metro rail maps. (Bercher et al. 2014) presents
human subject studies to verify the effectiveness of such ex-
planations by grounding these explanations in the context of
the application of an assistive system for putting together a
home theater system.

Another closely related work, we briefly mentioned ear-
lier is the method discussed in Sreedharan, Srivastava, and
Kambhampati (2020). However it is worth noting that the
primary objective of this previous work is to provide a sum-
mary of the whole policy and does not provide any insights
into specific roles played by individual steps, which is our
main objective. In addition to focusing on individual steps,
we also address the challenge of filtering side-effects from
fluents that are actually needed by future actions. This is a
step that is central to our ability to generalize causal links
from classical planning literature.

In addition to justified actions, extant literature have also
considered other notions of required actions particularly at
the level of specific planning problems. One particular ex-
ample is the notion of action landmarks (Karpas and Domsh-
lak 2009), where action landmarks are actions that must oc-
cur in every plan to a goal. Note that a justified action need
not be a landmark action at all either for an all-outcome de-
terminization of the original problem or for the version of the
problem that restricts plans that corresponds to traces possi-
ble under a given policy (we will refer to this version of the
planning problem as the policy restricted planning problem).
After all, even for a given policy there might be paths from
initial states to goal that circumvents the step in question
completely. On the other hand, if one were to root the prob-
lem in the state that is part of the step in question and regen-
erate the action landmarks, then even non-justified actions
would turn into an action landmark for the policy restricted
formulation, since the policy requires the action to be ex-

ecuted (while justified actions still may not be a landmark
in the case of the original problem). A closely related, but
distinct notion is that of strong and weak stubborn sets (Alk-
hazraji et al. 2012) , which can again be seen to include non-
justified actions. While each of these notions are in some
sense capturing cases where an action may be required, it
is interesting to note that they are in fact capturing comple-
mentary concepts.

8 Conclusion

The paper presents a generalization of causal chains and ac-
tion justification, which could act as basis for explaining
why an action is required in a plan. While this paper fo-
cuses on formalizing and establishing the properties of the
generalized versions of the notions, the next step would be
to run user studies to verify the effectiveness of explanations
built out of these components. While results from Sreedha-
ran, Srivastava, and Kambhampati (2020), already provides
some positive evidence to the utility of such information, we
hope to run a large scale user study to verify the effective-
ness of such explanations for FOND and stochastic policies,
similar to the one carried out by Bercher et al. (2014) for
line plans. It is worth noting that these generalized causal
links now present temporally ordered (but not necessarily
adjacent) facts that must hold in a set of traces. As such,
one could equivalently capture these causal links using LTL
formulas over these traces. One interesting thread of future
work might be to investigate whether there are particular
LTL templates that people prefer and whether we can map
our explanations (for well-justified actions or for other more
general forms of justification) to such templates. Some of
the other next steps, already mentioned in the paper, include
investigating weaker notions of justifications. We would also
be interested in seeing if we could extract such causal struc-
tures for other forms of planning including numeric and tem-
poral planning. Recent works (c.f. (Lindner and Olz 2022))
have also highlighted the usefulness of distinguishing be-
tween different roles played by actions within a single causal
link explanations. We also hope to investigate how to incor-
porate such considerations into our formulations.
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