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ABSTRACT

Recent breakthroughs in Artificial Intelligence (AI) have brought the dream of devel-

oping and deploying complex AI systems that can potentially transform everyday life

closer to reality than ever before. However, the growing realization that there might

soon be people from all walks of life using and working with these systems has also

spurred a lot of interest in ensuring that AI systems can efficiently and effectively

work and collaborate with their intended users. Chief among the efforts in this direc-

tion has been the pursuit of imbuing these agents with the ability to provide intuitive

and useful explanations regarding their decisions and actions to end-users. In this

dissertation, I will describe various works that I have done in the area of explaining

sequential decision-making problems. Furthermore, I will frame the discussions of

my work within a broader framework for understanding and analyzing explainable AI

(XAI). My works herein tackle many of the core challenges related to explaining auto-

mated decisions to users including (1) techniques to address asymmetry in knowledge

between the user and the system, (2) techniques to address asymmetry in inferential

capabilities, and (3) techniques to address vocabulary mismatch. The dissertation

will also describe the works I have done in generating interpretable behavior and

policy summarization. I will conclude this dissertation, by using the framework of

human-aware explanation as a lens to analyze and understand the current landscape

of explainable planning.
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Chapter 1

INTRODUCTION

Recent years have brought about a number of groundbreaking advances in the field

of Artificial Intelligence (AI). From expert Go players to self-driving cars, the field

has developed systems of such impressive capabilities that their descriptions would

have found a comfortable home in the science-fiction books of just the past decade.

However, we are still far from reaping the true transformational potential AI systems

promise to our society. Today, we see most AI systems being used effectively in

two modes, either in consumer facing applications with low impact and complexity

or in mission critical applications where the AI system’s user is specially trained to

anticipate and work with the various idiosyncrasies of the system. We are currently far

from capable of fielding complex AI systems that can work with users from different

walks of life and our incapability stems not necessarily from a lack of progress in some

core competencies related to the tasks themselves. In fact, I would argue that as of

the time of writing this thesis, some of the most daunting challenges to building such

systems belong to the realm of social intelligence. The problem of creating AI systems

that can effectively and fluently work with humans from different backgrounds is one

we must adequately address if we are to create truly transformative AI systems.

In this thesis, I will focus on one of the prerequisite skills required for such social

agents, namely the ability to effectively explain and justify its decisions to the users

they are interacting with. Note that the focus here will be on identifying the content

of the explanation and not mode of communication and as such we will eschew from

discussions on issues like natural language generation. Even when we will touch

on the question of how to communicate the information, our focus will be on the
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specific vocabulary to use as opposed to generating an exact natural language text or

visualization.

The problem of generating explanations for the decisions derived by AI systems

has recently received a lot of attention from the wider AI research community. This

has led to the rapid growth of a subfield of AI popularly referred to as explainable

AI or XAI, that has led to the development of a number of useful explanatory

tools. However, a large number of works outside the ones discussed in this thesis,

tend to adopt a very myopic view of explanation generation problems. Most of these

works consider a specific explanatory challenge and try to propose solutions that

reflect the authors’ intuition about potentially useful explanatory information that

could be provided in this context. Even with all its successes, a shortcoming of

such a fragmented approach to studying explanation generation, is a lack of coherent

framework to understand the overall problem. This lack of an overarching framework

becomes quite apparent when one looks at popular surveys of the field that tend

to focus on clustering the works according to methodological similarities than any

deeper connection between the methods (cf. (Lakkaraju et al., 2020)).

The primary objective of this thesis is to provide a comprehensive and cogent

discussion of my contributions related to the problem of explaining solutions to se-

quential decision-making problems. As a secondary objective, I hope to provide a

computational and philosophical foundation to the problem of explanation genera-

tion by introducing the framework of ‘Human-Aware Explanations’. This framework

will essentially reduce the problem of explanation generation to a multi-agent reason-

ing problem. Through this thesis, I will use this framework as a lens to analyze my

various works that contribute to the larger problem of explanation generation. As a

coda, I will also turn this lens to the larger field of explanation generation for plan-

ning problems (popularly referred to as XAIP) and use it to provide a preliminary
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analysis of the field as a whole.

In the rest of the chapter, we will set the stage for the rest of the thesis by

describing some of the previous works done in the space of explanation generation.

This is meant to be purely a quick introduction, I have provided a more exhaustive

characterization of the work done within the space of explainable planning in Chapter

22. We then introduce the basic explanatory setting, along with the framework of

‘Human-Aware Explanations’, which we will be using throughout the rest of the

thesis. Next, we describe the three salient dimensions for explanations as identified

by the framework, along with how the framework related to some of the other well-

established concepts in the field. Next, we will provide an overview of the overall

structure of the thesis and finally end the chapter with a discussion of the impact the

works covered in this thesis have had.

1.1 A Brief History of Explanation Generation in AI

Generating effective explanations, and understanding the mechanisms and method-

ology behind generating effective explanations have been a part of the human intel-

lectual enterprise for a very long time. As such, the study of explanations is a very

rich field that has been looked at by experts in various areas, including psychology,

philosophy, and other social sciences. Some of the earliest attempts at providing a

unified account of explanation go back as far as the four cause model introduced

by Aristotle (Hankinson, 2001). Since then, numerous models for explanation have

been introduced including Hempel’s theory of explanations (Hempel and Oppenheim,

1948) and statistical models of explanations (Kelley, 1967).

On the other hand, explanation generation in AI has been mostly driven by the

need to create systems that can interact and successfully collaborate with their end-

users. As such the literature on AI has been more focused on methods that address
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specific explanatory issues related to specific systems or decision-making approaches

rather than proposing and formalizing overarching theories or models for explanations.

A particular subfield of AI that identified the need for effective explanations early

on was Expert Systems (Chandrasekaran et al., 1989; Swartout and Moore, 1993).

This is not surprising given the early popularity of the field, the drive to make practical

systems for complex domains, and the inclusion of mechanisms to support some forms

of uncertainty. In these cases, the explanatory systems were meant to act both as

a way for the system to walk the user through the reasoning behind their decisions

and even potentially help the user identify cases where the system may be making

faulty decisions. Explanations for most cases take the form of presenting the user

with a human-understandable representation of the trace of their internal inference

process and were expected to be translated into natural language. Going through the

desiderata of explanations as identified by Swartout and Moore (1993), we already

see initial versions of many of the ideas we will revisit in this document, including

the need to adapt to specific user’s background, use of abstractions, and being able

to explain the preference of one recommendation over another.

Expert systems were not the only field in AI to look at the utility of explanations.

Specifically for this document, there was also early interest in generating explanations

in the context of automated planning (Kambhampati, 1990). This includes techniques

like generating correctness explanations and the use of derivational traces. While

these were not necessarily explanations targeted at the end-user and were for most

cases, additional annotations were provided along with the plans to allow for faster

retrieval and reuse of these plans in novel scenarios. One interesting point to see is that

you can trace back many of the currently popular explanatory methods in automated

planning to some of these earlier works (cf. (Seegebarth et al., 2012)). Though in

general, given these explanations were meant to be generated by and for the planner,
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they were, as Chakraborti et al. (2017) puts it “soliloquys” with no considerations

provided to the users of the system (essentially assuming that the end-user has the

same model as the planner).

As the recent developments in AI and in particular, those in deep learning have

brought us one step closer to realizing practical AI-powered systems, we see again

the resurgence of calls to create explainable systems (Gunning, 2017). Unsurprisingly

most of the current interest is focused on generating explanations for single-shot

decision-making systems (Lakkaraju et al., 2020) (where arguably most of the rapid

developments have been made). Similar to earlier efforts in expert-system, most of

the current methods in the space look at creating tools meant to address explanatory

requirements for specific AI approaches. Attempts at taking stock of the field have

generally focused on categorizing works in terms of methodological similarity and

generally tend to silo the methods for single-shot decisions from sequential decision-

making problems.

However, this increased interest in developing explainable AI systems has brought

attention to the problem of generating explanations in the context of other AI prob-

lems, including planning. Explainable automated planning, popularly referred to by

the moniker XAIP, has been in particular getting a lot of attention. The interest

in explainable planning has been fueled by several factors, including the effectiveness

of modern-day planners. Many of the state-of-the-art planners are capable of solv-

ing quite complex planning problems, defined over extremely large state and action

spaces and now increasingly getting used in many real-world applications (cf. (Biundo

et al., 2021)). There is the inherent complexity of the solution concepts themselves,

particularly for more complex problems, the question of what following a plan or

policy may constitute may not be clear. Finally, the wide use of human-interpretable

symbolic models and the use of sound and formal methods to derive decisions over
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them opens up the possibility that, in fact, one could derive meaningful explanations

generated using these methods. Chapter 22, will be devoted specifically to providing

an exhaustive characterization of various works done within this space.

The specific contributions that will be described in the thesis were also developed

while keeping in mind, some of the more widely accepted properties of effective every-

day explanations (cf. (Lombrozo, 2006; Miller, 2017a)). In this thesis, we will almost

exclusively look at generating explanations that are contrastive, selective, and social.

A contrastive explanation takes the form of answers to questions of the form “Why P

and not Q?”, where P is the fact being explained and Q is the foil that the explainee

was expecting. Such explanations would need to help the user contrast the fact with

the foil. On the other hand, a selective explanation is one where the explainer presents

only the information relevant to the current query, and as such selectivity is closely

related to the minimality of explanations. Finally, an explanation would be consid-

ered social if the contents are tailored to the background and beliefs of each explainee.

In particular, this property speaks against the use of one-size-fits-all explanations.

1.2 Human-Aware Explanation

The basic interaction setting we will consider throughout most of this thesis is the

one illustrated in Figure 1.1. Here we have an automated agent (henceforth referred

to just as the robot) that is using a model MR to derive its decisions. For now,

we won’t make any specific commitments on the representation or on the form the

model takes but just that the model can be specified using a set of factors FMR .

Here the factors could include information like the state variables used to define the

state space over which the model MR is described. Now the robot uses a decision-

making algorithm along with the model to derive a decision (henceforth referred to as

plans). If Π is the space of robot plans possible for the task, then we can characterize
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Figure 1.1: A Diagrammatic Representation of the Overall Interaction Setting We

Will Be Focusing on Through the Dissertation. We Have a Robot Using Its Model

Mr to Derive Its Decision πr. In the Same Environment, We Might Have a Human

Observer Trying to Make Sense of the Robot Behavior in Terms of Their Expectation

of the Robot Model Mr
h. The Human May Require Help Understanding the Robot

Plans If Their Model and Their Inferential Process Leads to Them Expecting a Com-

pletely Different Plan. Thus Any Attempt to Explain the Current Decision Should

Help Reconcile These Differences Between the Robot and the Human.

the robot’s decision-making process by the total ordering (�MR) it induces over this

space of plans. That is, given two plans π1, π2 ∈ Π, π1 ≺MR π2 means given their

current model and decision-making process, the robot would choose π1 over π2. In

this thesis, we will mainly focus on cases where the robot makes use of a sound,

complete and optimal decision-making process. Commonly, we will use πR to denote

the actual plan chosen by the robot and in general expect ∀π ∈ Π, πR �MR π. For

most planning formalisms, the ordering would be corresponding to the cost of the

plan, thus π �MR π′, if C(π) ≤ C(π′), where C is the cost function associated with

the modelMR. Note that in this thesis, we generally take an expansive view of what
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constitutes a model. In addition to transition dynamics, a model here could include

the reward/cost function, any explicit goals, and even specific algorithmic choices

that may be made by the robot.

On the other hand, we have a human who is observing the robot, and uses a

model MR
h to make sense of the decision being proposed by the robot. Where MR

h

represents the human observer’s belief about the robot’s model. Such mental models

could also be understood in terms of the theory of mind (Premack and Woodruff, 1978)

formed by the human in regards to the robot. Moreover, we expect this model to be

represented by a set of factors FMR
h

. Now the human uses their own decision-making

algorithm (which may be their estimation of what robot’s reason process might be)

that induces a total ordering ≺MR
h

over the plan space Π (for now we assume that

both the robot and the human share the same possible decision space). It may

be more accurate to represent ≺MR
h

as a partial ordering, since the humans are at

best bounded rational agents (Simon, 1957). As such, given their limitations (both in

terms of computational resources and deliberation time) there may be plans that they

cannot realistically evaluate and thus compare. However, to simplify the discussion,

we will assume a total ordering and will assume that in cases where the human can’t

correctly evaluate some plans, they will assume that the plans are preferred over the

current one being proposed by the robot.

Now for a given plan πR ∈ Π, the human observer would expect an explanation

from the robot, if the human believes there are other possible plans that could po-

tentially be better than the plan proposed ,i.e, as per the human ∃π′ ∈ Π, such that

π
′ ≺MR

h
πR. The goal of explanations thus becomes to establish why πR ≺M̂R

h
π
′

holds, where M̂R
h could potentially be an updated human mental model. In terms

of the concepts established in the philosophical works related to explanation (cf.

(Hempel and Oppenheim, 1948)), this would thus correspond to the explanandum
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related to our explanation. Effectively, the above description boils down the goal of

explanation generation to that of resolving a mismatch in expectations between the

decision-maker and the one observing or receiving the decisions.

1.2.1 Other Notions of Explainability

Before we delve further into using this framework, it would be helpful to discuss

how this proposed notion of explanation compares and contrasts against some of the

other existing notions of explainability studied in the context of planning problems.

Explicability: To start with, let us discuss how the framework relates to expli-

cable planning and explicability as studied in the context of interpretable behavior

generation (Sreedharan et al., 2022a; Chakraborti et al., 2019b; Zhang et al., 2017).

At a high-level, one could view the problem of explicable behavior generation as that

of generating plans that align with human expectations. An explicable planner would

in effect try to identify plans with high explicability scores, i.e., a measure of how

close the current behavior aligns with the expected behavior. In our framework, the

human expectations about the robot behavior is encoded using the ordering ≺MR
h

and

it is easy to see that within our framework, a plan is said to require no explanation

only if the current plan is the most preferred plan per human’s expectation and as

such is explicable. This relation between explicability and the framework sketched

above is further illustrated by works like Sreedharan et al. (2021c) that have shown

that existing schemes for explicability scores can be understood by considering dif-

ferent decision-making algorithms for the human. The explicability score of a plan

can thus become a reflection of the potential relationship between the current plan

and the set of minimal plans as identified by the ordering ≺MR
h

. In other words, the

framework sketched above can be equivalently thought to be asserting that a plan

requires explanation, if the human doesn’t assign a perfect explicability score and
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the goal of the explanation is to ensure that the human would find the given plan

perfectly explicable. In almost all of the methods, we focus solely on the fact that

a plan doesn’t have perfect explicability and not on the degree by which it deviates

from the perfect score. This is because the deviation just tells us about how confused

the human is at the robot’s choice and isn’t necessarily an indicator of how easy or

hard it is to explain the current plan.

Contrastive Explanations: In recent years, contrastive explanations have come

to represent the vast majority of works that have been done within the context of

explainable planning. As discussed earlier, contrastive explanations tend to focus on

explanations that contrast the fact being explained over alternate foils. Explanations,

as outlined in Section 1.2, are inherently contrastive. In this setting, πR forms the

fact being explained and the foil consists of the plans humans may consider to be

potentially better than the robot plan. In this thesis, we will consider both explicit

contrastive explanations (where the human would explicitly raise the alternate plans

they were expecting) and implicit ones, which can be best understood as answering

the question ‘Why did you choose plan πR?’. In the latter category, the foil set

essentially consists of all plans possible in the given domain.

Process Explanation vs Preference Explanation: Another popular catego-

rization for explanations was the one introduced by Langley (2019), which divides the

explanatory techniques into those that provide a process account and ones that pro-

vide a preferential account. Process accounts are those that effectively try to explain

how the current system came up with the current decision and preference accounts

are the ones that try to explain why the current decision may be preferred over al-

ternatives. Within the latter category, the preference of the current decision may

be established without necessarily discussing how the current approach reached the

current decision. In the thesis, all the specific works we will discuss are going to be
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preference accounts. One of the central hypothesis laid out by Langley (2019) is that

lay users would prefer preference accounts, while process accounts will be primarily

useful to system developers. Thus the choice to focus on preference accounts, allows

us to propose methods that may be of use to a larger number of users. However, it

is still worth noting that the framework outlined in Section 1.2, is equally applicable

to process explanation as it is for preference explanation. After all, in both cases

the need for explanation arises due to a mismatch between the plan proposed by the

system and what was expected by the system.

1.3 Three Dimensions of Explanations

As established earlier, the essential objective of explanation is to reconcile the

asymmetry between the human’s expectations about the agent with the agent’s true

decision-making process. Therefore, any effective explanations in this scenario should

address the core cause for the divergence of human expectations from the agent’s

preference for the current plan. Additionally, any information we provide to the user

as part of the explanation, should be presented in terms that would be easy for the

human to understand.

In this framework, we will see that explanation involves acknowledging if not

reconciling the inherent asymmetry between the human and the robot along three

distinct dimensions. Two of these dimensions correspond to the two possible sources

of mismatch in expectation between the human and the robot, namely the difference

in their knowledge about the task and the differences in inferential/decision-process

and capability. The third dimension focuses on the agent’s ability to effectively com-

municate with the human the required information in terms they can understand. As

we will see, I have looked at explanation generation methods that touch on all three

dimensions of this framework. Specifically, the dimensions are as follows:
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• Asymmetry in Task Knowledge: One of the possible reasons why the human

may be confused about the agent’s choice of plans may be a mismatch between

the agent’s knowledge of the task from the human’s belief regarding it, i.e., the

contents of MR may not match MR
h . This means that even if the human were

an optimal reasoner, they may find the system’s decisions confusing, as the plan

πR may not be optimal in the model MR
h (which means there may be a plan

π
′ ≺MR

h
πR). To address this issue, the explanation would have to help update

the human beliefs about the task, so they can correctly evaluate the plan in

question. We will specifically investigate the generation of such explanations

using the framework of model reconciliation.

• Asymmetry in Inferential Capabilities: Another potential source of confusion

would be the difference in the actual inferential techniques and capabilities avail-

able to the human observer as compared to the agent. Specifically, even if the

human’s mental model about the robot was the same as the robot (i.e., MR
h =

MR), human may not be capable of establishing the fact that ∀π′ , πR ≺MR
h
π
′
.

My approaches to address this asymmetry, will be built around three strategies,

namely,

1. Allowing the user to raise more specific explanatory queries: One of the

specific examples of this strategy would be to allow the user to specify some

specific alternate plans they may be expecting. In general, an explanation

as to why a given plan may be preferred over a small set of alternatives may

be easier for the user to understand than an explanation for the optimality

of a given plan. Additionally, more specific explanatory queries also allow

us to better exploit the next two strategies.

2. Perform model simplification: Rather than exposing the human to the full
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complexity of the true system model, one could provide simpler representa-

tions of the model that suffices to respond to the specific user query. Here,

one could leverage techniques such as state abstraction, local approxima-

tion, problem decomposition, etc. to form such simplified representations.

3. Provide additional explanatory information: Even with the simplified rep-

resentation, the human may have a hard time verifying that the property

being explained (i.e. plan πR is preferred over some set of alternatives).

One could provide additional information that demonstrates why the prop-

erty holds in the model provided to the user. Examples of such explanatory

witnesses, include information like sample execution traces of alternate

plans, with information about potential points of failures and explicitly

contrasting them against the execution of πR.

• Asymmetry in Vocabulary: A prerequisite for generating explanations that align

with either of the previously mentioned dimensions is the ability to convey the

required information in terms the users can understand. Thus a core require-

ment for effective explanation is access to a shared vocabulary in which the

models are or can be expressed. Barring this, we need methods that can build

such shared vocabulary and be able to map the system’s models in terms of

concepts from this shared vocabulary. Such methods are particularly impor-

tant when the agent may be using learned models or deriving its decisions from

simulators that rely on complex inscrutable state representations. In particular,

we will look at my efforts at using a set of concepts collected from the user and

use them to identify model fragments of equivalent symbolic models that can

represent the original inscrutable model used by the agent.

As sketched above, the explanation in this case involves helping the human build or
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improve their mental model of the system, so they can correctly evaluate the plan

in question. This means a central component of the explanation, or precisely the

explanan (Hempel and Oppenheim, 1948), provided involves information about the

model used by the agent to derive its decisions. However this information could be

simplified or translated into terms that the human understands before being pre-

sented to them. In addition to the model information, the user may also provide ad-

ditional information demonstrating the fact that the underlying plan property being

explained holds in the updated human mental model. We can allow this framework to

also support process explanation, by expanding our notion of task knowledge to also

include information about the algorithm used by the system and therefore the expla-

nation may involve correcting any misconceptions the human may have had about the

decision-making algorithm used by the system. Additionally, the explanatory witness

may help walk the human through the actual inference steps used by the system.

1.4 Impact of Work

In terms of the impact that my work has had on the larger XAIP and XAI com-

munity, the explanatory frameworks I have helped develop have already been utilized

by various applications and extended by many researchers in the community. In this

section, to summarize this impact, I will list some of the prominent planning-based

systems that directly use the explanation methods I have helped develop or other

explanation generation methods that I haven’t helped develop but directly build on

one of my earlier works.

1. Decision-Support: The work I have done, particularly on model-reconciliation

explanation has been used in multiple decision-support systems, starting with

RADAR (Grover et al., 2020a). Since then, the explanation generation methods

I have helped developed have been utilized in multiple extensions of RADAR like
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MA-RADAR (Sengupta et al., 2018), iPOS (Grover et al., 2020b) and RADAR-

X (Valmeekam et al., 2020), some of whose development I wasn’t directly in-

volved in.

2. Plan visualization: The FRESCO system (Chakraborti et al., 2019a) uses a

variation of model-reconciliation explanation to generate a minimal visualiza-

tion for a given plan. This system also won the runner-up for the best demo

award at ICAPS-2018.

3. Explanation Visualization: The VizXP (Kumar et al., 2021) was a system that

was developed to visualize model-reconciliation explanations.

4. Domain Authoring/Model Debugging Tool- The D3WA+(Sreedharan et al.,

2020b), which is also described in the thesis, uses the explanation generation

methods described in Part II of this thesis. The system won the best demo

award at ICAPS-2020.

5. Intelligent Tutoring System: The system MOO (Grover et al., 2018) was an in-

telligent tutoring system that utilizes model-reconciliation explanation methods

to help teach students various topics.

6. Interpretable Interface for Robots: JEDAI (Shah et al., 2022) is an interpretable

interface for robot control that leverages the HELM explanation generation

framework.

7. Explanation for Logical Knowledge Bases: The methods presented by Vasileiou

et al. (2021, 2022) directly extend model reconciliation methods for different

logical knowledge bases.

8. Using theory-of-mind-based methods in general XAI problems: Shvo et al.
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(2020) extends model-reconciliation and its relation to epistemic reasoning, to

derive a general theory-of-mind-based framework to reason about explanations.

1.5 Thesis Outline

Figure 1.2 presents a graphical overview of the overall structure of the thesis. The

bulk of the technical contents in this thesis will be divided across six parts. The

first three parts will be focused on various explanation generation methods I have

developed. I will be classifying the work along the primary explanatory dimension

it was designed to address and each part will be focused on a specific dimension.

Specifically, Part I will cover the works focused on addressing knowledge asymmetry,

Part II on those focused on addressing inferential capability asymmetry and Part III

will focus on the problem of addressing vocabulary mismatch. Part IV will cover

my works focused on generating interpretable behaviors. In particular, the planning

methods designed to take into account the overhead of explanation when generating

the plan. I will also present a unified Bayesian formulation that can be used as a

basis to understand all the various interpretable metrics covered within the literature.

Part V will look at methods developed to effectively communicate the proposed robot

decision to the human. In particular, we will look at methods to generate summaries

for policies computed for stochastic shortest path problems. Finally Part VI will

conclude the thesis. In this part, we will also use the human-aware explanation

framework and the three dimensions as a means of analyzing the current landscape

of XAIP works. Each part (except Part VI) will start with an overview chapter that

provides a brief summary of the technical contributions covered in that section and

any takeaways from the work, including the relationship between the specific works

and wider literature on XAI. After the overview section, the chapters corresponding to

specific works are organized such that every chapter will build on the previous chapter
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or relax some assumptions made in the earlier chapters. Outside of the chapters

that are covered in these six parts, Chapter 2 will cover some of the mathematical

background that will be used throughout the thesis and I will conclude the thesis in

Chapter 23.

1.6 Previous Publications Covered in the Thesis

The thesis contains contents that have been previously presented in two AIJ jour-

nal articles, seven IJCAI papers, three ICAPS papers, one ICLR paper and one AAAI

paper. The specific papers covered in various parts are as follows

• Part I: This part covers methods presented by Sreedharan et al. (2021a); Chakraborti

et al. (2017); Sreedharan et al. (2018a, 2019a)

• Part II: This part covers methods presented by Sreedharan et al. (2021d, 2019b,

2020b)

• Part III: This part covers methods presented by Sreedharan et al. (2022c);

Sreedharan and Kambhampati (2021) and some discussions from Kambhampati

et al. (2022).

• Part IV: This part covers methods presented in Chakraborti et al. (2019f);

Sreedharan et al. (2020a, 2021c).

• Part V: This part mainly focuses on the technique presented by Sreedharan

et al. (2020c) and also refers to some discussion presented by Sreedharan et al.

(2022b).

• Part VI: The landscape presented is partly based on the survey presented by

Chakraborti et al. (2020).
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Figure 1.2: A Graphical Overview of the Thesis. The Primary Contributions of the

Thesis Are Distributed Across Six Parts. It Covers the Works I Have Done on Ex-

planation Generation, Interpretable Behavior Generation, and Policy Summarization.

Finally, the Human-aware Explanation Framework Is Used as a Tool to Analyze the

Existing Works in the Space of XAIP.
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Chapter 2

BACKGROUND

The primary goal of this chapter is to establish some of the basic notations that will

be used throughout the thesis. In particular, we will focus on defining three classes

of planning formalisms that the approaches discussed in this thesis rely on. This

includes, (a) the fundamental goal-directed deterministic planning problems defined

using STRIPS-like model definitions (Geffner and Bonet, 2013a), which will be used

in the majority of works covered in the thesis, (b) fully observable non-deterministic

or FOND planning problems (Bryce and Buffet, 2008), which deal with models that

support qualitative non-determinism, and (c) Stochastic planning models, particularly

ones specified using PPDDL-style descriptions (Younes and Littman, 2004).

2.1 Deterministic Planning Models

When we are referring to deterministic planning models, we are usually referring

to models that can be mathematically represented by a tuple of the form M =

〈F,A, I,G,C〉, where the elements correspond to

• F - The set of propositional fluents that defines the state space corresponding

to the planning problem. We will represent the state space using the notation

S, such that S = 2F and each state s ∈ S is uniquely represented by the set of

propositions that are true in that state, i.e, s ⊆ F .

• A - The set of actions and each action ai ∈ A is described by a tuple of the

form ai = 〈pre+(ai), pre−(ai), adds(ai), dels(ai)〉, where
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– pre+(ai) ⊆ F are the positive preconditions for the action ai. In general,

an action is only executable if the state satisfies the positive preconditions.

– pre−(ai) ⊆ F are the negative preconditions for the action ai. An ac-

tion is executable in a state only if the fluents that are part of negative

preconditions are false in the state.

– add (ai)/del (ai) correspond to the add and delete effects of the action ai.

Add effects correspond to the set of fluents set true by successful execution

of the action and the deletes specify the set of fluent sets false by the action.

• I - Specifies the initial state for the planning problem.

• G - The specification of the goal, such that G ⊆ F . Any state s ∈ SM, such

that G ⊆ s is considered a valid goal state.

• C - The cost function for the problem. In most cases, the cost function depends

only on the action and is specified as C : A→ R>0).

Note that each action a ∈ A is also associated with a label that uniquely identifies

the action. Overloading the notations a bit, we will use a to denote the specific action

label for a and A to represent the set of all labels. We will use a transition function

δM to capture the effect of executing the plan under a given model. Specifically,

δM(s, a), will denote the resultant state obtained by executing the a in state s in

accordance with the model M, such that

δM(s, a) =


(s \ del (a)) ∪ add (a), if exe(a, s,M) = true

undefined otherwise

Where exe(a, s,M) = pre+(a) ⊆ s and s ∩ pre−(a) = ∅

It’s worth noting that the model components F , A and C are usually grouped

together under the term the domain.
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A (possibly empty) sequence of actions π = 〈a1, ..., ak〉 is called a solution (also:

plan) if it is executable in the initial state and results into a goal state, i.e., δ(π, I,M) =

δ(ak, δ(...(δ(a1, I,M))...) ⊇ G. Additionally, each action and by extension the plan

can be associated with a cost. In this case, the cost of the plan π = 〈a1, ..., ak〉 will

be given as C(π) = Σk
i=1C(ai). A plan π∗ is said to be a optimal for a model M, if

6 ∃ π′ with δ(π′, I,M) ⊇ G, such that C(π′) < C(π∗).

We will use the notation C∗M to capture the cost of an optimal plan for M, i.e., the

length of any shortest solution for M.

Each model specification M corresponds to a transition system T , where a tran-

sition system can be represented by a tuple of the form T = 〈S, L, T, so, Sg〉, where

S is the set of possible states in M, L is the set of transition labels (corresponding

to the action that induce that transition), T is the set of possible labeled transitions,

s0 is the initial state and Sg is the set of states that satisfies the goal specified byM.

We will refer to T to be the safe transition system induced by a model M, if and

only if, for any labeled transition 〈s, a, s′〉 ∈ T , we have exe(a, s,M) = true.

To simplify notations, in some of the chapters we will also use the logical entail-

ment symbol (|=) instead of the subset relation symbol to capture the fact that a

precondition may be satisfied in a given state. This will allow us to use more general

preconditions than conjunctive preconditions. In fact in scenarios, where we don’t

want to explicitly differentiate between positive and negative preconditions, we will

simply use the symbol pre . In such a case, pre could stand for some logical formula

over the propositions that are specified by the model fluents.

In this thesis, there may be many works where we will need to consider multiple

models and perform comparison between these models. In such scenarios, to help

distinguish between the model components of different models, we will add the specific
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model label as a superscript over each model component. While the above description

provides a basic overview of the basic deterministic planning model, many of the

specific works covered in this thesis may consider more specialized or more general

versions of this planning model. In such cases we will add a small discussion in the

corresponding chapter that covers the specific model variant.

2.2 FOND Planning Models

We will be focusing on cases where the planning problem may be represented as

a fully observable non-deterministic planning problem (FOND). Such models may be

represented in declarative form using PDDL variants that use ‘oneof’ effects (Bryce

and Buffet, 2008). Mathematically, we expect a FOND model to be represented by a

tuple of the formM = 〈F,A, I,G〉, where similar to Section 2.1, F is a set of proposi-

tional fluents that is used to define the state space for the planning problem (S = 2F );

A is the set of actions available to the agent; I ⊆ F is the initial state from which the

agent needs to try achieving the goal; andG ⊆ F is the goal specification and any state

that satisfy the goal specification (i.e., G ⊆ s) is considered to be a valid goal state.

Each action a ∈ A is further defined by a tuple a = 〈pre+(a), pre−(a),E(a)〉. Where

pre+(a)/pre−(a) again corresponds to the preconditions and E(a) the set of possible

effects. The effects are captured as E(a) = {〈add1(a), del1(a)〉, ...., 〈addk(a), delk(a)〉}

represents the set of mutually exclusive effects that could occur as the result of ex-

ecuting the action a and add i(a) ⊆ F and del i(a) ⊆ F correspond to the add and

delete effect corresponding to the ith effect. With the action definitions in place we

can also define the set of transitions possible under this action definition, denoted as

T, such that we define a transition 〈s1, a, s2〉 to be possible (denoted as 〈s1, a, s2〉 ∈ T)
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if

exe(a, s,M) = true and ∃j, such that

〈add j(a), del j(a)〉 ∈ E(a), s2 = (s1 \ del j(a)) ∪ add j(a)

Where exe(a, s,M) is defined as before. Throughout this thesis, we will focus on

cases where non-determinism is considered to be fair, i.e., for every non-deterministic

action every possible effect is guaranteed to occur if the action is executed infinitely

often (Cimatti et al., 2003). A solution to a FOND problem takes the form of a policy

that maps a state to action, usually denoted by a function π : S → A ∪ {a∅}), where

a∅ is an artificial empty action assigned to states that are either not supported by the

policy or are goal states. A concept that will be central to the main of the techniques

are traces supported by a given policy. We will refer to a state action state sequence

of the form τ = 〈s1, a1, ..., sk〉 as a trace supported by a policy π if for every si, where

i 6= k, we have π(si) = ai, 〈si, ai, si+1〉 ∈ T. A trace is said to be a goal achieving

trace if G ⊆ sk and a state state sj is said to be reachable from si if there exists a

trace of the form τ = 〈si, ai, ..., sj〉.

In terms of a valid policy for a FOND problem, the literature generally differ-

entiates between weak solutions, strong and strong-cyclic solutions. Weak solutions

are policies such that there exists at least one goal-achieving trace from the initial

state. A policy is said to be strong-cyclic if the goal is reachable from all states

reachable from the initial state. Finally, a policy is said to be a strong solution if we

can again guarantee that goal is reachable from all states reachable from the initial

state, but additionally, now we require that a state can never be repeated in any given

goal-reaching trace.
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2.3 Stochastic Planning Models

The most general stochastic planning model we will consider in this thesis would

be the undiscounted MDP with absorbing goal states that tries to generate optimal

solutions under total expected cost criteria. Such models can be described by a tuple

of the form M = 〈S,A, P, C, I,G〉, where S is the state space, A the set of possible

actions, P : S × A × S → [0, 1] the transition probabilities, C captures the cost of

executing a given action in the state, I ∈ S the initial state and G ⊆ S, is the set

of absorbing goal states. We will specifically limit ourselves to cases where for all

state-action pairs C(s, a) ≥ 0, that is the MDP as a whole satisfies P -assumption.

MDPs satisfying the P -assumption are an extremely general formulation and covers

several formalisms studied frequently in AI literature including non-negative cost infi-

nite horizon discounted MDPs (Bertsekas, 2005), non-negative cost SSPs (Bertsekas,

2005), MAXPROB MDPs (Kolobov et al., 2011), NEG Mdps (Puterman, 2014), non-

negative cost GSSP’s (Kolobov et al., 2011), SSPUDE’s (Kolobov et al., 2012) etc.

We will use the functions J : S → R and Q : S ×A→ R to capture the expected

total cost and Q function and use J∗ and Q∗ to represent the optimal cost and Q

function respectively. A policy is said to be optimal if Jπ(s) = J∗(s), where Jπ is

the cost function obtained by following the given policy. In the most general case, a

policy takes the form π = 〈µ1, µ2, ...〉, where each µi is a mapping from state to action

for a timestep i. A policy is said to be stationary if the mapping does not depend

on the time step. Under P condition value iteration converges if the cost function

is initialized with a bounded cost function less than the optimal cost function (say

zero cost function) provided there exists a fixed point to the function. In addition

to the optimal cost, a factor that we will be considering through the thesis is the

probability that the execution of policy from a given state would lead it to a goal state
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P π(s) =
∑

g∈G P (g|s, π) and we will P ∗(s) to denote the highest possible probability

of achieving the goal under any policy for the given model (which we will refer to as

the MAXPROB policy) and use P π(s) to capture probability under a given policy.

In most cases, we will focus on the cost and probability of achieving the goal from

the initial state and states reachable from the initial state.

Effectively in this scenario planning for MDPs becomes a multi-objective opti-

mization problem, where the objectives become the cost of the solution and the

reachability of goals. This may come across as surprising to readers who are most

familiar with the more restricted classes of MDPs where any potential goals are usu-

ally compiled into the cost function. Thus one may anticipate all goal reachability

queries being resolved through cost differences. More general variants of MDPs like

iSSPUDE (Kolobov et al., 2012) use the probability of getting to the goal as a sepa-

rate optimization criterion for choosing the policy. So instead of choosing a plan that

directly optimizes the cost, they use the probability of getting to the goal as primary

criteria and the cost as the secondary one. This also means that in every case there

exists a strict ordering between the objectives and we don’t need to rely on additional

considerations like establishing Pareto optimality or considering the two objectives

simultaneously.

A given MDP could be represented in multiple ways, a particularly popular way

one could represent such models is to describe them using problem description lan-

guages like PPDDL (Younes and Littman, 2004). Mathematically a model described

in PPDDL is given by a mathematical object of the formMD = 〈FD, AD, ID, GD, CD〉,

where similar to previous models, FD is the set of proposition fluents that are

used to define the state space; AD is the set of actions available in the model;

ID is the initial state and GD ⊆ FD is the goal specification. Similar to Sec-

tion 2.2, each a ∈ A is further defined as a = 〈pre+(a), pre−(a),E(a)〉. Where
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pre+(a)/pre−(a) again corresponds to the preconditions and E(a) the set of possi-

ble effects. E(a) is further defined as a set of the form E(a) = {e1(a), ..., ek(a)},

where ej(a) = 〈add j(a), del j(a), pj(a), cj(a)〉, where

• add j(a) ⊆ F , called the add effects, is the set of facts that will be turned true

by that effect in the resultant state.

• del j(a) ⊆ F , called the delete effects, is the set of facts that will be turned false

by that effect in the resultant state.

• pj(a), of the probability of occurrence of that particular effect (the distribu-

tion over the individual effects is expected to form a well formed probability

distribution).

• cj(a) is the cost associated with the transition

Each valid description of the above form is expected to translate into an MDP of

the form M = 〈S,A, I, P, C,G〉, where

• S is the set of states of the model and corresponds to the state space defined

by F (i.e |S| = 2|F |). For each i ∈ S, we will use si to denote the symbolic state

(described by the set of propositional facts that are true in the state).

• A is the action/control space of the underlying MDP and is isomorphic to the set

A and will use amdpaj
to represent the corresponding action for the symbolic action

aj, moreover A(i) = {amdpaj
|exe(aj, si,M) = true} (i.e. the actions available at

a state i).

• I is underlying atomic state corresponding to ID

• P is transition probability and is defined as follows

P (i, amdpak
, j) = p
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if there exists an effect em(ak) ∈ E(ak) such that sj = (si\delm(ak))∪addm(ak)

and pm(ak) = p, else it is 0. Note that given the assumption the effects are

mutually exclusive, there exist at most one effect that can cause this transition

provided there are no redundant effects (i.e., ones that leave the state unchanged

because of adding existing facts or trying to remove missing facts).

• G is the set of destination or goal nodes that correspond to the ones specified

by G, i.e., for i ∈ G, you have GD ⊆ si

• C : S × A× S is the cost function.

For a given description MD, we will use the notation M to refer to the MDP

induced by it, especially if we don’t explicitly mention the underlying MDP. Two

facts that might be worth keeping in mind is (1) for any MDP with a finite set of

actions and states can be captured by a description and (2) for a fixed fluent and

action set, the model description for a given MDP is unique.

2.4 Variations of the Model

In this thesis, there may be many works where we will need to consider mul-

tiple models and perform comparison between these models. In such scenarios, to

help distinguish between the model components of different models, we will add the

specific model label as a superscript over each model component. While the above

descriptions provides a basic overview of the different modeling formalism, many of

the specific works covered in this thesis may consider more specialized or more general

versions of these planning models. In such cases we will add a small discussion in the

corresponding chapter that covers the specific model variant.
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ADDRESSING KNOWLEDGE
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Chapter 3

PART I OVERVIEW

In this first part of the thesis, we will focus on explanation generation techniques that

were designed primarily to address the first dimension of human-aware explanation

generation, namely Asymmetry in Knowledge. Specifically, we will introduce the

framework of model-reconciliation explanation that will allow us to design explanation

generation methods that will help resolve the knowledge gap between the human

and the robot, so that the human can correctly evaluate the robot decision. In

particular, we will consider a specific version of the model reconciliation explanation,

namely minimally complete explanation and through the remaining chapters we will

see how such explanations can be generated while relaxing many of the assumptions

made by the original model-reconciliation framework. Most of the works in this part

(except Chapter 7), will make the explicit assumption that the human is an optimal

and complete planner capable of identifying the optimal plan corresponding to their

current mental model about the task.

3.1 Structure for Part I and Technical Contributions

Part I will be divided into four chapters

1. Chapter 4: In this chapter we will introduce the basic model-reconciliation

framework and define various types of model-reconciliation explanations. In par-

ticular, we will focus on two types, namely, Minimally Complete Explanations

and Minimally Monotonic Explanations and will propose model-space search

based algorithms to generate such explanations. This chapter will also present
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the basic user study we ran to verify the effectiveness of the model-reconciliation

explanations. Additionally, we will also briefly discuss some approximations of

the minimally complete explanations.

2. Chapter 5: In this chapter, we will consider the computational complexity of

generating model-reconciliation explanations. In particular, we will establish

that the complexity of solving the decision version of the minimally complete

explanation generation is ΣP
2 -Complete. As part of establishing this complexity,

we will also present a quantified boolean formula compilation that can generate

minimally complete explanations.

3. Chapter 6 This chapter will see us revising the problem of generating minimally

complete explanations and trying to relax one of the central assumptions made

by the original formulation, namely the access to the human’s mental model

MR
h . We will consider a case, where the robot has access to an incomplete

representation of the human mental model, which effectively corresponds to a

set of possible models. In this scenario, we will mainly focus on the problem of

generating two forms of explanations that can deal effectively with such model

uncertainty, namely conformant and contingent explanations.

4. Chapter 7: In this chapter, we will go one step further and assume the robot

has no knowledge of the human mental model. Instead the method will look

at the possibility of learning proxy functions, like labeling functions that would

suffice to generate explanations. This chapter will also see us extending model-

reconciliation to support MDPs.
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3.2 Important Takeaways

One of the facts the reader will notice as they go through the various methods

described in this thesis (and not just this part) is the fact that information about the

robot model forms the core of every type of explanation discussed. The information

may be transformed (part II) or translated (part III), but the explanation still contains

model information. This part focuses purely on the question of identifying such

information, while making simplifying assumptions. As such, this part of the thesis

acts as the foundation for the rest of the explanatory methods discussed in the other

parts. One of the connections we will briefly touch on in this part and develop much

further in Part IV is the relationship between reasoning about model-reconciliation

explanations and epistemic reasoning. In fact, methods like those presented by Shvo

et al. (2020) have effectively extended the idea of model-reconciliation far beyond

the context of planning and have considered such methods as a way to do model

explanation generation in general. Additionally, looking at many of the popular

methods of explanation generation in general XAI, one can see parallels to model-

reconciliation explanations discussed in this part. For example, consider the popular

feature attribution explanation techniques (Lakkaraju et al., 2020). In this work, the

goal is to convey a simplified model of how the various models influence the final

decision as captured by the decision-making agent. However, one must note that

most works in XAI don’t just limit themselves to addressing knowledge asymmetry

but they also implicitly try to address other dimensions, such as vocabulary mismatch

and inferential capability asymmetry.
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Chapter 4

MODEL RECONCILIATION EXPLANATION

In this chapter, we will introduce the foundational framework we will use to generate

explanations that address knowledge asymmetry between the human and the robot.

Throughout this chapter, we will assume that the human is a perfect reasoner and

capable of identifying the optimal plan for a given plan. We will define the framework

over deterministic planning models described using PDDL (Section 2.1). In this case,

the human plan preferences (≺MR
h

) are defined based on the plan cost, thus human

would consider π �MR
h
π′, if CM

R
h (π) ≤ CM

R
h (π′), where CM

R
h is the cost function

that is part of MR
h . Model reconciliation framework, will allow us to update the

human’s expectation about the plan π∗R by providing information about the robot

model MR that was previously missing from MR
h . Under this framework, we will

consider various types of explanation and in particular look at Minimally Complete

Explanations or MCE, which as we discussed we will further investigate through the

other chapters in this part of the thesis.

We will start the chapter by discussing a motivating example that will not only

allow us to provide an intuitive example for model reconciliation explanations, but

will also act as a running example we will use to define the various components of

the framework. Then we will delve into the formal definition of the various model-

reconciliation explanations, the algorithms for generating the explanations, followed

by an evaluation. The evaluation will include both a computational evaluation of the

explanation generation algorithms and a user study to establish the effectiveness of

the explanation types.
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4.1 Running Example: The Fetch Domain

Consider the Fetch robot whose design requires it to tuck its arms and lower its

torso or crouch before moving. This is not obvious to a human navigating it and

it may lead to an unbalanced base and toppling of the robot if the human deems

such actions as unnecessary. The move action for the robot is described in PDDL

(Aeronautiques et al., 1998) in the following model snippet –

(:action move

:parameters (?from ?to - location)

:precondition (and (robot-at ?from) (hand-tucked) (crouched))

:effect (and (robot-at ?to) (not (robot-at ?from))))

(:action tuck

:parameters ()

:precondition ()

:effect (and (hand-tucked) (crouched)))

(:action crouch

:parameters ()

:precondition ()

:effect (and (crouched)))

Notice that the tuck action also involves a lowering of torso so that the arm can

rest on the base once it is tucked in.1 Now, consider a planning problem where the

the robot needs to transport a block from one location to another, with the following

initial and goal states –

1Fetch User Manual: https://docs.fetchrobotics.com/
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Figure 4.1: The Fetch in the Crouched Position with Arm Tucked (Left), Torso Raised

and Arm Outstretched (Middle) and the Rather Tragic Consequences of a Mistaken

Action Model (Right Showing a Fractured Head from an Accident).

(:init (block-at b1 loc1) (robot-at loc1) (hand-empty))

(:goal (and (block-at b1 loc2)))

An optimal plan for the robot involves a tuck action followed by a move:

pick-up b1 -> tuck -> move loc1 loc2 -> put-down b1

The human, on the other hand, expects a much simpler model, as shown below.2

In the human’s model of the robot, move action does not have the preconditions for

tucking the arm and lowering the torso, and tuck does not automatically lower the

torso either. This means the behavior expected by the human may not match what

is generated by the robot.

2This is actually a common problem with deploying any software to end users: generic user

models are used to model the average user and these lack details and nuances of the system at hand

that only experts would be aware of.
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(:action move

:parameters (?from ?to - location)

:precondition (and (robot-at ?from)

:effect (and (robot-at ?to) (not (robot-at ?from))))

(:action tuck

:parameters ()

:precondition ()

:effect (and (hand-tucked))

(:action crouch

:parameters ()

:precondition ()

:effect (and (crouched)))

The original plan is no longer optimal to the human who can envisage better

alternatives (a shorter plan without the extra tuck action) in their mental model.

An explanation here is a model update that can address this disagreement.

Explanation >> MOVE_LOC1_LOC2-has-precondition-HAND-TUCKED

This correction brings the mental model (i.e. the model the human believes is

being used by the robot) closer to the robot’s ground truth and is necessary and

sufficient to make the robot’s plan optimal in the resultant domain so that the human

cannot envisage any better alternatives. This process of selective update of human

mental model to clarify the status of the current plan forms the essence of the model

reconciliation process.
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4.2 Explanation as Model Reconciliation

The model reconciliation framework introduces the mental model of the human in

the loop into a planner’s deliberative process, in addition to the planner’s own model

in the classical sense. As described previously, even if the robot is doing the best it

can, a plan π∗R that is optimal in the robot’s model may not be optimal in the human

mental model and thus inexplicable from the point of view of the human – this means

that the human can come up with “better solutions” (in their mental model) to the

planning problem at hand. The explanation process thus begins with the following

question:

Q1: Why plan π∗R?

As discussed in Chapter 1, the goal of explanation here is to ensure that plan π∗R that

both the explainer and the explainee agree that this is the best decision that could

have been made in the given problem. In this framework, we will achieve by providing

model artifacts to the explainee so that π∗R is now also optimal in the updated mental

model (we will refer to this as the completeness property later).

Before we can formally define a model reconciliation explanation problem, we need

to define a model parameterization function.

Definition 1. Given a set of propositions F and a set of action names A, let M(F,A)

be the space of models that can be defined over F and A, i.e., ∀M ∈ M(F,A) there

exist C, I, and G, such that M = 〈F,A, I,G,C〉 is a planning model.

Now each model from a given model space can be uniquely identified by a so-called

model parameterization function.

Definition 2. The model parameterization function Γ : M(F,A) → 2F
(F,A)

for a

given space of models M(F,A), maps a model from M(F,A) to a subset of propositions
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F (F,A) (henceforth referred to as model parameters), where

F (F,A) = {init-has-f | f ∈ F} ∪ {goal-has-f | f ∈ F} ∪⋃
a∈A

{a-has-pos-prec-f, a-has-neg-prec-f,

a-has-add-f, a-has-del-f | f ∈ F}.

For a model M = 〈FM, AM, δM, IM, GM〉, the parameterization function Γ(M) is

defined by

τMI = {init-has-f | f ∈ IM}

τMG = {goal-has-g | g ∈ GM}

τMpre+(a) = {a-has-pos-prec-f | f ∈ preM+ (a)}

τMpre−(a) = {a-has-neg-prec-f | f ∈ preM− (a)}

τMadd (a) = {a-has-add-f | f ∈ addM(a)}

τMdel (a) = {a-has-del-f | f ∈ delM(a)}

τMa = τMpre+(a) ∪ τMpre−(a) ∪ τMadd (a) ∪ τMdel (a)

τMA =
⋃

a∈AM
τMa

Γ(M) = τMI ∪ τMG ∪ τMA

Note that Γ : M(F,A) → 2F
(F,A)

is a bijective mapping and we will use the function

Γ−1 to identify the model in M(F,A), corresponding to a specific subset of F (F,A).

Definition 3. A model reconciliation explanation problem is defined by the tu-

ple PMRE = 〈MR,MR
h , π

∗
R〉, where MR = 〈FMR

, AM
R
, IM

R
, GM

R
, CM

R〉 is a model

that the robot is using in its decision-making; MR
h = 〈FMR

h , AM
R
h , IM

R
h , GM

R
h , CM

R
h 〉

is the model the human observer is associating with the robot; and π∗R is the robot’s

plan to be explained. We will require that the models share the same fluents and action

names FM
R

= FM
R
h , AM

R
= AM

R
h , and that π∗R is optimal in the model MR.
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Note that the requirement of using identical action names and fluents is not a

restriction. Using the same action name set is a canonical requirement as we assume

that the only confusion that might exist is due to misaligned action definitions, i.e., the

human observer might not have a perfect understanding of an action’s preconditions

and effects, but does know which action is being observed. Requiring identical fluent

sets is just for convenience, but not a restriction either, since we can always define this

shared/identical fluent set as the union of the individual ones in case they are different.

To simplify the discussion, we will focus on models with positive precondition and

unit cost in this chapter, however all the methods discussed in this chapter is easily

extensible to more general model formalisms.

It is important to note here thatMR
h is the robot’s approximation of the informa-

tion content of the mental model – there is, of course, no PDDL inside the human’s

head (c.f. previous example in Section 4.1). This mental model here is just a copy of

the robot’s own decision making problem (here, a planning problem but it can be any

other model of decision making or even a graph) that the robot believes is held by

the human. This model is thus a generative model of user expectations of the robot.

Also note, these two models could pretty much differ along any aspects, including

the initial state, goal, action definitions (including cost) and even fluents used. For

notational convenience, we will assume there is a one-to-one correspondence between

actions in the modelsMR andMR
h . Though, we can easily use this to capture cases

where one model have actions absent from the other, by assuming the other model

has a dummy version the same action with unachievable preconditions.

Having defined the problem definition formally, we still need to say what a solution

to it is. Solutions to model reconciliation explanation problems are called explana-

tions, which in turn are defined based on model updates, which we define next. A

model update updates the human’s modelMR
h to make it align with the actual model,
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i.e., the one of the robot, MR. Formally, such updates are defined as follows:

Definition 4. For a given model reconciliation problem PMRE = 〈MR,MR
h , π

∗
R〉, a

model update is given by a tuple E = 〈ε+, ε−〉, such that ε+ ⊆ Γ(MR) \Γ(MR
h ) and

ε− ⊆ Γ(MR
h )\Γ(MR). We will refer to the modelMR

h +E = Γ−1((Γ(MR
h )\ ε−)∪ ε+)

as the updated human model that results from applying E.

We can now define solutions for model reconciliation explanation problems. Note

that we don’t require a “complete” set of changes to the human model making it

identical to the actual one. It suffices to “explain” the robot’s plan, i.e., so that this

plan becomes optimal in the human’s model.

Definition 5. For a given model reconciliation explanation problem PMRE, Where

PMRE is defined by the tuple〈MR,MR
h , π

∗
R〉, a model update E = 〈ε+, ε−〉 is considered

to be a valid explanation if the plan π∗R is an optimal plan in MR
h + E.

The above question can also be posed in the following, more explicit contrastive form:

Q2: Why not a different plan π̂?

Here π̂ are the possible foils. As before, the purpose of an explanation is to negate

the foil so that both the human and the robot can come to the same page with regards

to the decision that it has made, i.e. the explainee agrees that π is better than π̂.

(4) δ(ÎRh , π,M̂R
h ) |= ĜR

h ∧ CM̂
R
h (π∗R) < CM̂

R
h (π̂).3

3Note that the “closeness” or distance to an expected plan is modeled here in terms of cost

optimality, but in general this can be any preference metric like plan similarity as investigated in

existing literature on explicable planning (Zhang et al., 2017, 2016; Kulkarni et al., 2019a) and plan

similarity. (Srivastava et al., 2007; Nguyen et al., 2012) This does not effect the algorithms described

here, since the computation of similarity is only invoked during the evaluation process of a particular

node and the stopping criterion of the search, rather than the search process itself.
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Note that Q1, in essence, involves an implicit quantifier over all possible foils, as

handled by Condition (3). This is thus a more conservative target and subsumes the

case of the explicit foil.

Note that we only consider cases where the robot is explaining a decision it has

made with respect to its model – the robot model need not be the ground truth.

However, the robot can only explain with respect to what it believes to be true.

The grander scope of explanatory dialogue may involve cases where it is wrong in its

understanding of the model of the world (or is suboptimal) and thus needs to update

its own model (or plan, respectively) iteratively in the course of further explanatory

dialogue with the human in the loop, for example, in a decision support setting.

(Smith, 2012; Grover et al., 2020a)

4.2.1 Model Space Search

We can now define a model-space search problem 〈〈F ,Λ〉,Γ(M1),Γ(M2)〉 (we will

use F as a stand-in for F (F,A) where F and A are shared between M1 and M2). Λ

corresponds to the action set containing unit model change actions λ : F → F . The

new transition or edit function is given by δM1,M2(s1, λ) = s2 such that condition a

: s2 \ s1 ⊆ Γ(M2), condition b : s1 \ s2 6⊆ Γ(M2) and condition c |s1∆s2| = 1 (∆

being the symmetric difference) are satisfied. This means that model change actions

can only make a single change to a model at a time (starting fromM1), and all these

changes are consistent with the target model M2. The solution to a model-space

search problem is given by a set of edit functions {λi} that transforms the model

M1 to M2, i.e. δM1,M2(Γ(M1), {λi}) = Γ(M2). An explanation can thus be cast

as a solution to the model-space search problem 〈〈F ,Λ〉,Γ(MR
h ),Γ(M̂)〉 with the
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transition function δMR
h ,MR such that Condition (3) above is preserved.4

4.2.2 Types of Explanations

Before we go on to different types of explanations, we consider the following re-

quirements that characterize explanations in this multi-model setting.

R1. Completeness - Explanations of a plan should allow them to be compared

and contrasted against other alternatives, so that no better solution exists. We

enforce this property by requiring that in the updated human mental model the

plan being explained is now optimal.

– An explanation is complete iff CM̂
R
h (π) = C∗

M̂R
h

.

R2. Conciseness - Explanation should be concise so that they are easily under-

standable to the explainee. The larger the explanation, the harder it is for the

human to process that information. Thus the length of the explanation, i.e. the

number of edits made as part of the explanation (|Γ(MR
h )∆Γ(M̂R

h )|), serves as

a useful proxy or first approximation for the complexity of an explanation.

R3. Monotonicity - This ensures that remaining model differences cannot change

the completeness of an explanation, i.e. all aspects of the model that engendered

the plan have been reconciled. Thus, monotonicity of an explanation subsumes

completeness and requires more detail.

4Notice that we insisted that explanations must be compatible with the planner’s model (M2 in

the above definition). If this requirement is relaxed, it allows the planner to generate “explanations”

that it knows are not true, and thus deceive the human. (Chakraborti and Kambhampati, 2019a)

While endowing the planner with such abilities may warrant significant ethical concerns, we note

that the notion of white lies, and especially the relationship between explanations, excuses and lies

has received very little attention and affords a rich set of exciting research problems. (Isaac and

Bridewell, 2017; Chakraborti and Kambhampati, 2019b)
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Explanation Type R1 R2 R3 R4

Plan Patch Explanation / VAL 7 3 7 3

Model Patch Explanation 3 7 3 3

Minimally Complete Explanation 3 3 7 ?

Minimally Monotonic Explanation 3 3 3 ?

(Approximate) Minimally Complete Explanation 7 3 7 3

Table 4.1: Requirements for Different Types of Explanations.

– An explanation is monotonic iff

CM̂(π∗R) = C∗M̂ ∀M̂ : Γ(M̂)∆Γ(MR
h ) ⊂ Γ(M̂)∆Γ(MR

h ).

That is no additional information revealed about the model should cause the

human to question the validity of previous explanations. This is a very useful

property to have. Doctors, for example, reveal different amount of detail to their

patients as opposed to their peers, and often need to maintain monotonicity and

resolve conflict of information (Palmieri and Stern, 2009) during the course of

treatment. Further, the idea of completeness, i.e. withholding information

on other model changes as long as they explain the observed plan, is also quite

prevalent in how we deal with similar scenarios ourselves - e.g. progressing from

Newtonian physics in high school to Einsteins Laws of Relativity in college.

R4. Computability - While conciseness deals with how easy it is for the explainee

to understand an explanation, computability measures the ease of computing

the explanation from the point of view of the planner.

We will now introduce different kinds of multi-model explanations that can par-

ticipate in the model reconciliation process, propose algorithms to compute them,
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and compare and contrast their respective properties. We note that the requirements

outlined above are in fact often at odds with each other - an explanation that is very

easy to compute may be very hard to comprehend. This (as seen in Table 4.1) will

become clearer in course of this discussion.

A simple way to explain would be to provide the model differences pertaining to

only the actions that are present in the plan being explained –

Definition 6. A Plan Patch Explanation (PPE) is given by –

EPPE = ∆{MR,MR
h }

⋃
f∈preM+ (a)∪addM(a)∪delM(a):a∈π∗R

τ(f)

Clearly, such an explanation is easy to compute and concise by focusing only on

plan being explained. However, it may also contain information that need not have

been revealed, while at the same time ignoring model differences elsewhere in MR
h

that could have contributed to the plan being suboptimal in it. Thus, it is incomplete.

One could adapt VAL (Fox et al., 2005; Howey et al., 2004), to the multi-model

setting to generate a version of PPE. VAL is plan validation tool which can simulate

the execution of a plan in a given model. A multi-model VAL would need to extend

this simulation to multiple models and compare and contrast the differing results of

execution in the different models. Unfortunately, this would still suffer from the same

limitations mentioned above. On the other hand, an easy way to compute a complete

explanation would be to provide the entire model difference to the human –

Definition 7. A Model Patch Explanation (MPE) is given by –

EMPE = Γ(MR)∆Γ(MR
h )

This is also easy to compute but can be quite large and is hence far from being

concise. Thus, in the following, we will try to minimize the size (and hence increase
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the comprehensibility) of explanations by searching in the space of models and thereby

not exposing information that is not relevant to the plan being explained while still

trying to satisfy as many requirements as we can.

Definition 8. A Minimally Complete Explanation (MCE) is the shortest

possible explanation that is complete –

EMCE = arg min
E
|Γ(M̂)∆Γ(MR

h )| with R1

The explanation provided before in the Fetch domain, are indeed the smallest

domain changes that may be made to make the given plan optimal in the updated

action model, and is thus an example of a minimally complete explanation.

The optimality criterion happens to be relevant to both the cases where the human

expectation is better, or worse, than the plan computed by the planner. This might

be counter to intuition, since in the latter case one might expect that just establishing

feasibility of a better plan would be enough. Unfortunately, this is not the case, as can

be easily seen by creating counter-examples where other faulty parts of the human

model might disprove the optimality of the plan.

Proposition 1. If CM
R
h (π∗R) < minπ C

MR
h (π), then ensuring feasibility of the plan in

the modified planning problem, i.e. δM̂(Î , π∗R) |= Ĝ, is a necessary but not a sufficient

condition for M̂ = 〈F̂ , Â, Î, Ĝ〉 to yield a valid explanation.

Note that a minimally complete explanation can be rendered invalid given further

updates to the model. This can be easily demonstrated in our running example in

the Fetch domain. Imagine that if, at some point, the human were to find out that

the action move also has a precondition (crouched), then the previous robot plan

will no longer make sense to the human since now, according to the human’s faulty

model (being unaware that the tucking action also lowers the robot’s torso) the robot

44



would need to do both tuck and crouch actions before moving. Consider the following

explanation in the Fetch domain instead –

Explanation >> TUCK-has-add-effect-CROUCHED

Explanation >> MOVE_LOC2_LOC1-has-precondition-CROUCHED

This explanation does not reveal all model differences but at the same time ensures

that the plan remains optimal for this problem, irrespective of any other changes to

the model, by accounting for all the relevant parts of the model that engendered the

plan. It is also the smallest possible among all such explanations.

Definition 9. A Minimally Monotonic Explanation (MME) is the shortest

explanation that preserves both completeness and monotonicity –

EMME = arg min
E
|Γ(M̂)∆Γ(MR

h )| with R1 & R3

An MCE or MME solution may not be unique to an MRP problem. This can

happen when there are multiple model differences supporting the same causal links in

the plan - a minimal explanation can get by (i.e. guarantee optimality in the modified

model) by only exposing one of them to the human. Interestingly, it was showed in

(Zahedi et al., 2019) how theoretically equivalent explanations are, in fact, sometimes

interpreted differently by the explainee. The results from that study indicated a

preference for explanations related to the effects of actions.

Proposition 2. MCEs and MMEs are not unique, i.e. there might be multiple min-

imally complete and monotonic solutions to a given MRP.

Even though MCEs are an abridged version of an MME, it is easy to see that

an MCE may not necessarily be part of an actual MME. This is due to the non-

uniqueness property of MCEs and MMEs. This is illustrated in Figure 4.2.
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Figure 4.2: Illustration of the Different Kinds of Explanations in the Fetch Domain.

Here the PPE and MPE Are Equivalent and Involves Notifying the Human about

Both Missing Preconditions of the Move Action and the Missing Effect for the Tuck

Action (Which Is the Worst Case for the Former) and Both Longer than the MCE

or the MME. Also, the MCE (Which Involves Just Notifying the Human That There

Hand Being Tucked Is a Precondition for Move Action) is Shorter than, and Inter-

estingly Not a Subset of, the Mme.

Proposition 3. An MCE may not be a subset of an MME, but it is always smaller

or equal in size, i.e. |EMCE| ≤ |EMME|.

4.2.3 Model Space Search for Minimal Explanations

In the following, we will see how the state space designed in Section 4.2.1 can be

used in model-space search for computing MCEs and MMEs (computation of PPE

and MPE follows directly from MR, MR
h and π∗R).
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Model Space Search for MCEs

To compute MCEs, we employ A∗ search, similar to (Wayllace et al., 2016; Keren

et al., 2017), in the space of models, as shown in Algorithm 1. The algorithm is

referred to as MEGA – Multi-model Explanation Generation Algorithm. Given an

MRP, we start off with the initial state Γ(MR
h ) derived from the human’s expectation

of a given planning problem MR, and modify it incrementally until we arrive at a

planning problem M̂ with CM̂(π∗R) = C∗
M̂

, i.e. the given plan is explained. Note

that the model changes are represented as a set, i.e. there is no sequentiality in the

search problem. Also, we assign equal importance to all model corrections. We can

easily capture differential importance of model updates by attaching costs to the edit

actions λ - the algorithm remains unchanged. We also employ a selection strategy

for successor nodes to speed up search (by overloading the way the priority queue is

popped) by first processing model changes that are relevant to actions in π∗R and πH

before the rest.

Proposition 4. The successor selection strategy outlined in Algorithm 1 yields an

admissible heuristic for model space search for minimally complete explanations.

Proof. Let E be the MCE for an MRP problem and let E ′ be any intermediate ex-

planation found by our search such that E ′ ⊂ E , then the set E \ E ′ must contain at

least one λ related to actions in the set {a | a ∈ πR ∨ a ∈ π′} (where π′ is the optimal

plan for the model M̂ where δMR
h ,MR(Γ(MR

h ), E ′) = Γ(M̂). To see why this is true,

consider an E ′ where |E ′| = |E| − 1. If the action in E \ E ′ does not belong to either

π∗R or π′ then it can not improve the cost of π∗R in comparison to π′ and hence E can

not be the MCE. Similarly we can show that this relation will hold for any size of E ′.

We can leverage this knowledge about E \ E ′ to create an admissible heuristic that

considers only relevant changes.
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Model Space Search for MMEs

As per the definition of MMEs, beyond the model obtained from the minimally mono-

tonic explanation, there do not exist any models which are not explanations of the

same MRP, while at the same time making as few changes to the original problem as

possible. It follows that this is the largest set of changes that can be done on MR

and still find a model M̂ where CM̂(π∗) = C∗
M̂

- we are going to use this property in

the search for MMEs.

Proposition 5. EMME = arg maxE |Γ(M̂)∆Γ(MR)| such that ∀M̂ Γ(M̂)∆Γ(MR) ⊆

Γ(M̂)∆Γ(MR) it is guarantee to have CM̂(π∗) = C∗M̂.

This is similar to the model-space search for MCEs, but this time starting from the

robot’s model MR instead. The goal here is to find the largest set of model changes

for which the explicability criterion becomes invalid for the first time (due to either

suboptimality or inexecutability). This requires a search over the entire model space

(Algorithm 2). We can leverage Proposition 5 to reduce our search space. Starting

from MR, given a set of model changes E where δMR,MH
(Γ(MR), E) = Γ(M̂) and

CM̂(π∗) > C∗
M̂

, no superset of E can lead to an MME solution. In Algorithm 2, we

keep track of such unhelpful model changes in the list h list. The variable EMME

keeps track of the current best list of model changes. Whenever we find a new set

of model changes where π∗ is optimal and is larger than EMME, we update EMME

with E . The resulting MME is all the possible model changes that did not appear in

EMME.

Figure 4.3 contrasts MCE search with MME search. MCE search starts fromMR
h ,

computes updates M̂ towards MR and returns the first node (indicated in orange)

where CM̂(π∗) = C∗
M̂

. MME search starts fromMR and moves towardsMR
h . It finds
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the longest path (indicated in blue) where CM̂(π∗) = C∗
M̂

for all M̂ in the path. The

MME (green) is the rest of the path towards MR
h .

Approximate MCE-search

Both MCEs and MMEs may be hard to compute - in the worst case it involves a

search over the entire space of model differences. Thus the biggest bottleneck here

is the check for optimality of a plan given a new model. A check for necessary or

sufficient conditions for optimality, without actually computing optimal plans can be

used as a powerful tool to further prune the search tree.

In the following section, we investigate an approximation to an MCE by employing

a few simple proxies to the optimality test. By doing this we lose the completeness

guarantee but improve computability. Specifically, we replace the equality test in line

12 of Algorithm 1 by the following rules –

1. δM̂(Î , π∗R) |= Ĝ; and

2. CM̂(π∗R) < CM
R
h (π∗R) or δM̂(Î , π∗H) 6|= Ĝ; and

3. Each action contributes at least one causal link to π∗R.

(1) ensures that the plan π∗R originally computed is actually valid in the new model.

(2) requires that this plan has either become better in the new model or at least that

the human’s expected plan π∗H has been disproved. Finally, in (3), we ensure that for

each action ai ∈ π∗R there exists an effect p that satisfies the precondition of at least

one action ak (where ai ≺ ak) (where ak can be a specialized goal action) and there

exists no action aj (where ai ≺ aj ≺ ak) such that p ∈ delM̂(aj). Such explanations

are only able to preserve local properties of a plan and hence incomplete.

Proposition 6. Criterion (3) is a necessary condition for optimality of π∗ in M̂.
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Figure 4.3: Illustration Contrasting MCE Search with MME Search.

Proof. Assume that for an optimal plan π∗R, there exists an action ai where criterion

(3) is not met. Now we can rewrite πR as

π′R = 〈a0, a1, . . . , ai−1, ai, ai+1, . . . , an, an+1〉

where in all models, pre ·+(a0) = ∅ and add ·(a0) = {I} and pre ·+(an+1) = {G}.

It is easy to see that δM̂(∅, π′R) |= G. Now let us consider a cheaper plan π̂′R =

〈a0, a1, . . . , ai−1, ai+1, . . . , an, an+1〉. Since ai does not contribute any causal links to

the original plan πR, we will also have δM̂(∅, π̂′R) |= G. This contradicts our original

assumption of πR being optimal, hence proved.

4.2.4 Minimal Contrastive Explanation

As discussed earlier, the explanations presented here could be seen as cases where

the system is trying to address an implicit form of contrastive explanations. However,

there may be cases where the user may present an explicit set of foils. In such cases,

the goal of the explanations would become to identify a set of model updates that

establishes why π∗R is preferred over the foils. We will refer to such explanations as

Minimally Contrastive Explanations. We will formally define the explanation as,

Definition 10. Given the modelsMR
h ,MR, and a set of plans expected by the human
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Algorithm 1 Search for Minimally Complete Explanations
1: procedure MCE-Search

2: Input : MRP 〈π∗R, 〈M
R,MR

h 〉〉

3: Output : Explanation EMCE

4: Procedure:

5: fringe ← Priority Queue()

6: c list ← {} . Closed list

7: πR ← π∗ . Optimal plan being explained

8: πH ← π such that CM
R
h (π) = C∗

MR
h

. Plan expected by human

9: fringe.push(〈MR
h , {}〉, priority = 0)

10: while True do

11: 〈M̂, E〉, c← fringe.pop(M̂)

12: if CM̂(πR) = C∗
M̂

then return E . Return E if πR optimal in M̂

13: else

14: c list ← c list ∪ M̂

15: for f ∈ Γ(M̂) \ Γ(MR) do . Models that satisfy Condition 1

16: λ← 〈1, {M̂}, {}, {f}〉 . Removes f from M̂

17: if δMR
h
,MR (Γ(M̂), λ) 6∈ c list then

18: fringe.push(〈δMR
h
,MR (Γ(M̂), λ), E ∪ λ〉, c+ 1)

19: for f ∈ Γ(MR) \ Γ(M̂) do . Models that satisfy Condition 2

20: λ← 〈1, {M̂}, {f}, {}〉 . Adds f to M̂

21: if δMR
h
,MR (Γ(M̂), λ) 6∈ c list then

22: fringe.push(〈δMR
h
,MR (Γ(M̂), λ), E ∪ λ〉, c+ 1)

23: procedure Priority Queue.pop(M̂)

24: candidates← {〈〈M̂, E〉, c∗〉 | c∗ = arg minc〈〈M̂, E〉, c〉}

25: pruned list← {}

26: πH ← π such that CM̂(π) = C∗
M̂

27: for 〈〈M̂, E〉, c〉 ∈ candidates do

28: if ∃a ∈ πR ∪ πH such that τ−1(Γ(M̂) is related to a in MR or MR
h then

29: . Candidates relevant to πR or πH

30: pruned list← pruned list ∪ 〈〈M̂, E〉, c〉

31: if pruned list = ∅ then 〈M̂, E〉, c ∼ Unif(candidate list)

32: else 〈M̂, E〉, c ∼ Unif(pruned list)
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Algorithm 2 Search for Minimally Monotonic Explanations
1: procedure MME-Search

2: Input : MRP 〈π∗, 〈MR,MR
h 〉〉

3: Output : Explanation EMME

4: Procedure:

5: EMME ← {}

6: fringe ← Priority Queue()

7: c list ← {} . Closed list

8: h list ← {} . List of incorrect model changes

9: fringe.push(〈MR, {}〉, priority = 0)

10: while fringe is not empty do

11: 〈M̂, E〉, c← fringe.pop(M̂)

12: if CM̂(π∗) > C∗
M̂

then

13: h list← h list ∪ (Γ(M̂) ∆ Γ(MR)) . Updating h list

14: else

15: c list ← c list ∪ M̂

16: for f ∈ Γ(M̂) \ Γ(MR
h ) do . Models that satisfy Condition 1

17: λ← 〈1, {M̂}, {}, {f}〉 . Removes f from M̂

18: if δMR,MR
h

(Γ(M̂), λ) 6∈ c list

and @S s.t. (Γ(M̂)∆Γ(MR)) ⊇ S ∈ h list then . Proposition 5

19: fringe.push(〈δMR,MR
h

(Γ(M̂), λ), E ∪ λ〉, c+ 1)

20: EMME ← max|·|{EMME , E}

21: for f ∈ Γ(MR
h ) \ Γ(M̂) do . Models that satisfy Condition 2

22: λ← 〈1, {M̂}, {f}, {}〉 . Adds f from M̂

23: if δMR,MR
h

(Γ(M̂), λ) 6∈ c list

and @S s.t. (Γ(M̂)∆Γ(MR)) ⊇ S ∈ h list then . Proposition 5

24: fringe.push(〈δMR,MR
h

(Γ(M̂), λ), E ∪ λ〉, c+ 1)

25: EMME ← max|·|{EMME , E}

26: EMME ← (Γ(M̂) ∆ Γ(MR)) \ EMME

27: return EMME
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Π̂H , a set of model updates Econ is said to be a Minimally Contrastive Explanations

(MCrE), if

Econ = arg min
E
|E|

Such that

1. δM̂(Î , π∗R) |= Ĝ; and

2. CM̂(π∗R) < CM
R
h (π′) or δM̂(Î , π′) 6|= Ĝ ∀π′ ∈ Π̂H .

The algorithm for generating such explanation was discussed by Valmeekam et al.

(2020).

4.3 Evaluation

We performed a set of empirical evaluation to evaluate the computational charac-

teristics of the explanation generation for some benchmark problems, including the

time taken for generating the explanations and the size of generated explanations. Our

explanation generation system integrates calls to Fast-Downward (Helmert, 2006) for

planning, VAL (Howey et al., 2004) for plan validation, and pyperplan (Alkhazraji

et al., 2016) for parsing. The results reported here are from experiments run on a

12 core Intel(R) Xeon(R) CPU with an E5-2643 v3@t3.40GHz processor and a 64G

RAM. We use three popular planning domains (International Planning Competition,

2011) – BlocksWorld, Logistics and Rover – for our experiments. In order to generate

explanations we created the human model by randomly removing parts (precondi-

tions and effects) of the action model (the number of edits made per domain is equal

to the model patch explanations, which is reported in Table 4.2). Though the follow-

ing experiments are only pertinent to action model differences, it does not make any

difference at all to the approaches, given the way the state was defined. Also note

53



that these removals, as well as the corresponding model space search, were done in

the lifted representation of the domain.

4.3.1 MCEs Versus MMEs

The first item of consideration is the size of explanations with respect to the total

number of model differences, since we aimed for minimality as a desired feature for

both MCEs and MMEs. Table 4.2 shows the number of explanations produced and

the time taken (in secs) to produce them, against the ground truth. Heuristics seem

to provide advantage in terms of the time spent on each problem, particularly for

BlocksWorld domain. Further, note how close the approximate version of MCEs are

to the exact solutions. As expected, MME search is significantly costlier to compute

than MCE. However, note that both MCEs and MMEs are significantly smaller in

size (∼ 20%) than the total model difference (which can be arbitrarily large) in

certain domains, further underlining the usefulness of generating minimally complete

explanations as opposed to dumping the entire model difference on the human. A

general rule of thumb is –

| E approx.MCE | ≤ | EMCE | < | EMME | << |EMPE|

Note that the time required to calculate an MME in the Logistics problems is lower

than that for the corresponding MCE. This is because for most of these problems

a single change in the planner’s model made the plan be no longer optimal so that

the search ended after checking all possible unit changes. In general, the closer an

MCE is to the total number of changes shorter the MME search would be. Also note

how PPE solutions, though much easier to compute, do not have completeness and

monotonicity properties, and yet often spans the entire model difference, containing

information that are not needed to support the optimality of the given plan.
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Problem Instance

MPE PPE MME MCE (exact MCE (exact MCE

(truth) (exact) w/o heuristic) with heuristic) (approximate)

size time size time size time size time size time size time

Blocks

p1

10 n/a

5

n/a

3 1100.8 2 34.7 2 18.9 2 19.8

p2 8 4 585.9 3 178.4 3 126.6 3 118.8

World
p3 4 5 305.3 2 34.7 2 11.7 2 11.7

p4 7 5 308.6 3 168.3 3 73.3 3 73.0

Rover

p1

10 n/a

10

n/a

2 2093.2 2 111.3 2 100.9 2 101.0

p2 10 2 2018.4 2 108.6 2 101.7 2 102.7

p3 10 2 2102.4 2 104.4 2 104.9 2 102.5

p4 9 1 3801.3 1 13.5 1 12.8 1 12.5

Logistics

p1

5 n/a

5

n/a

4 13.7 4 73.2 4 73.5 4 63.6

p2 5 4 13.5 4 73.5 4 71.4 4 63.3

p3 5 5 8.6 5 97.9 5 100.4 3 36.4

p4 5 5 8.7 5 99.2 5 95.4 3 36.4

Table 4.2: Comparison of MCEs and MMEs. The Size of the Explanation Corre-

sponds to the Cardinality of the Explanations (I.E. | E∗ |)

We now increase the number of changes in the human model in BlocksWorld, and

illustrate the relative time (in secs) taken to search for exact MCEs in Table 4.3.

The human models are again generated by randomly removing model components

(the generated models are not the same as the ones Table 4.2). As expected there

is an exponential increase in the time taken, which can be problematic with even

a modest number of model differences. This further highlights the importance of

approximations in the model reconciliation process and motivates further research in

heuristics for model space search.

Finally, Table 4.4 illustrates how Proposition 5 reduces the number of nodes

searched to find MMEs in random problems from the BlocksWorld domain with 10

faults in the human model, as opposed to the total possible 210 models that can be

evaluated – equal to the cardinality of the power set of model changes between the

robot model and the mental model (i.e., |P(Γ(MR)∆Γ(MR
h ))|).
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|MR∆MR
h | problem-1 problem-2 problem-3 problem-4

3 2.2 18.2 4.7 18.5

5 6.0 109.4 15.4 110.2

7 7.3 600.1 23.3 606.8

10 48.4 6849.9 264.2 6803.6

Table 4.3: MCE Search Time for Increasing Model Differences for Blocksworld.

BlocksWorld problem-1 problem-2 problem-3 problem-4

Number of nodes expanded

for MME (out of 1024)
128 64 32 32

Table 4.4: Usefulness of Proposition 5 in Pruning MME Search.

4.4 Human-Factors Study of the Model Reconciliation Process

The design of explainable AI algorithms is, of course, incomplete without evalua-

tions with actual humans in the loop. Thus, in the following discussion, we will report

on the the salient findings from a series of controlled user studies we undertook in

order to evaluate the usefulness of the model reconciliation approach. Through these

studies, we aim to validate whether explanations in the form of model reconciliation

(in its various forms) suffice to explain the optimality and correctness of plans to the

human in the loop. We also study participants who were asked to generate explana-

tions in the form of model changes, to see if explanations generated by the humans

align with any of the multi-model explanations identified in the discussion so far.

The studies suggest that humans do indeed understand explanations of this form and

believe that such explanations are necessary to explain plans.

We stick to the USAR domain for our study (Figure 4.4). In the study, we only
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Figure 4.4: Illustration of the Simulated USAR Setting. We Expose a Mock Inter-

face to the External Agent (Right Inset) on the Browser to Study the Properties of

Different Explanations Afforded by the Model Reconciliation Framework.

simulate the interface to the external. As we discussed before, in general, differences

in the models of the human and the robot can manifest in any form (e.g. the robot

may have lost some capability or its goals may have changed). In the current setup,

however, we only deal with differences in the map of the environment as available to

the two agents.

4.4.1 Study – 1: Participants Are Explainers

The first part of the study aims to develop an understanding of how humans

respond to the task of generating explanations, i.e. if left to themselves, humans

preferred to generate explanations similar to the ones developed here. To test this,

we asked participants to assume the role of the internal agent in the explanation

process and explain their plans with respect to the faulty map of their teammate.

Specifically, we set out to test the following hypothesis –

H1. When asked to, participants would leverage model differences as a key ingredient

for explanations.

H1a. Explanation generated by participants would demonstrate contrastiveness.
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Thus, PPE type explanations would be overlooked in favor of complete

solutions (MCEs and MPEs) when there are multiple competing hypothesis

for the human.

H2. Participants would like to minimize the content of the explanation by removing

details that are not relevant to the plan being explained.

H2a. Explanations from participants would be closer to MCEs than MPEs.

H2b. This should be even more significant if restrictions are placed on commu-

nication.

As a result of this study, we intended to identify to what extent explanation

types described in this chapter built upon principles of explanations in human-human

interactions studied in social sciences (more on this in Section 4.5) truly reflect human

intuition.

Note that we primed the subjects to annotate changes in the map, while giving

them the opportunity to –

1. Provide more than annotations (and we did find other interesting kinds of ex-

planations emerge as we discuss later in Section 4.4.3)

2. Comment on the sufficiency and necessity of such explanations (as we report in

Section 4.4.1)

The reason for this choice is because in the work being evaluated here, com-

municating model differences has been considered to be the starting point of the

explanation process. So we start from that assumption and evaluate to what extent

the kinds of explanations introduced here – MCE / MPE / PPE / etc. – are actually

useful. Additionally, this setup also helps to re-contextualize the real importance of
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Figure 4.5: Interface for Study-1: Participants Assumed the Role of the Internal

Agent and Explained Their Plans to a Teammate with a Possibly Different Map of

the World.

model difference in the explanation process in light of reasons explained in (1) and

(2) above.

Experimental Setup

Figure 4.5 shows an example map and plan provided to a participant. On the left

side, the participant is shown the actual map along with their plan, starting position

and goal. The panel on the right shows the map available to the explainee. The

maps have removable and non-removable rubble blocking access to certain paths (the

maps may disagree as to the locations of the debris). The participants were asked to

convince the explainee of the correctness and optimality of the given plan by updating

the latter’s maps with annotations they felt were relevant in achieving that goal. We

ran the study with two conditions –

C1. Here the participants were asked to ensure, via explanations, that their plan

was correct and optimal in the updated model of their teammate;

C2. Here, in addition to C1, they were also asked to use the minimal amount of
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information they felt was needed to achieve the condition in C1.

Each participant was shown how to annotate (not an explanation) a sample map

and was then asked to explain 12 different plans using similar annotations. After

each participant was finished with their assignment, they were asked the following

subjective questions –

Q1. Providing map updates were necessary to explain my plans.

Q2. Providing map updates were sufficient to explain my plans.

Q3. I found that my plans were easy to explain.

The answers to these questions were measured using a five-point Likert scale. The

answers to the first two questions will help to establish whether humans considered

map updates (or in general updates on the model differences) at all necessary and/or

sufficient to explain a given plan. The final question measures whether the partici-

pants found the explanation process using model differences tractable. It is important

to note that in this setting we do not measure the efficacy of these explanations (this

is the subject of Study-2 in Section 4.4.2). Rather we are trying to find whether a hu-

man explainer would have naturally participated in the model reconciliation approach

during the explanation process.

In total, we had 12 participants for condition C1 and 10 participants for condition

C2 including 7 female and 18 male participants between the age range of 18-29 (data

corresponding to 5 participants who misinterpreted the instructions had to be re-

moved, 2 participants did not reveal their demographics). Participants for the study

were recruited by requesting the department secretary to send an email to the student

body to ensure that they had no prior knowledge about the study or its relevance.

Each participant was paid $10.
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Results

Figure 4.6 – The first hypothesis we tested was whether the explanations generated

by the participants matched any of the explanation types introduced in this chapter.

We did this by going through all the individual explanations provided by the partici-

pants and then categorizing each explanation to one of the four types, namely MCE,

PPE, MPE or Other (the ”other” group contains explanations that do not correspond

to any of the predefined explanation types – more on this later in Section 4.4.3). Each

explanation type was identified by checking the explanation provided by the partic-

ipants against what may have been generated by the algorithm. Figure 4.6a shows

the number of explanations of each type that were provided by the participants of

C1. The graph shows a clear preference for MPE, i.e. providing all model differences.

A possible reason for this may be since the size of MPEs for the given maps were

not too large (and participants did not have time constraints). Interestingly, in C2

we see a clear shift in preferences (Figure 4.6b) where most participants ended up

generating MCE style explanations. This means at least for scenarios where there are

constraints on communication, the humans would prefer generating MCEs as opposed

to explaining all the model differences.

These findings are consistent with H1, with very few of the explanations in type

“Other” (Figure 4.6). This is also backed up by answers to subjective questions Q1

and Q2 above. Further, the preference of MPE/MCE over PPE (H1a) is quite stark.

Contrary to H2a, participants seemed to have preferred full model explanation (MPE)

in C1 condition which is surprising. However, results of C2 condition are more aligned

with H2b, even though we expected to see a similar trend (if not as strong) in C1

condition as well.

Figures 4.7 and 4.8 – These show the results of the subjective questions for C1
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and C2 respectively. Interestingly, in C1, while most people agreed on the necessity

of explanations in the form of model differences, they were less confident regarding

the sufficiency of such explanations. In fact, we found that many participants left

additional explanations in their worksheet in the form of free text (we discuss some

of these findings in Section 4.4.3). In C2, we still see that more people are convinced

about the necessity of these explanations than sufficiency. But we see a reduction

in the confidence of the participants, which may have been caused by the additional

minimization constraints.

4.4.2 Study – 2: Participants Are Explainees

Now we study how different kinds of explanations outlined in Section 4.2 are per-

ceived by the participants. This study was designed to provide clues to how humans

comprehend explanations when provided to them in the form of model differences.

Specifically, we intend to evaluate the following hypothesis, in line with the intended

properties of each of the explanation types –

H1. Participants would be able to identify optimality given an MPE or MCE.

H2. Participants would be able to identify executability but possible suboptimality

of a plan given a PPE.

H3. Participants would not ask for explanations when presented with explicable

plans (optimal in mental model).

As a result of this study, we intend to validate whether desired properties of

explanations for task planning designed by following norms and principles outlines

in the social sciences in the context of human-human interactions (Miller, 2017a) do

actually carry over for human-robot interactions.
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(a) Study-1:C1 (b) Study-1:C2

Figure 4.6: Explanation Counts for Study-1:C:1-2.

Figure 4.7: Subjective Responses of Participants in Study-1:C1.
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Figure 4.8: Subjective Responses of Participants in Study-1:C2.

Figure 4.9: Interface for Study-2 Where Participants Assumed the Role of the Exter-

nal Commander and Evaluated Plans Provided by the Internal Robot. They Could

Request for Plans and Explanations to Those Plans (If Not Satisfied) and Rate Them

as Optimal or Suboptimal or (If Unsatisfied) Can Chose to Pass.
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Figure 4.10: Illustration of the Flow of Logic in the Experimental Setup.

Experimental Setup

During this study, participants were incentivized to make sure that the explanation

does indeed help them understand the optimality and correctness of the plans in

question by formulating the interaction in the form of a game.

Figure 4.9 shows a screenshot of the interface.5 The game displays to each partic-

5This domain has elements of both motion planning and task planning (e.g. removal of debris)

in it. The approaches developed in this chapter are applicable to task plans in general, as done in

the work on identifying preferences over logically equivalent explanations in (Zahedi et al., 2019),

where the study was conducted in a logistic domain with plans involving the transport of cargo.
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ipant an initial map (which they are told may differ from the robot’s actual map), the

starting point and the goal. Once the player asks for a plan, the robot responds with

a plan illustrated as a series of paths through waypoints highlighted on the map. The

goal of the participant is to identify if the plan shown is optimal or just satisficing.

If the player is unsure of the path, they can ask for an explanation from the robot.

The explanation is provided to the participant in the form of a set of model changes

in the player’s map. If the player is still unsure, they can click on the pass button to

move to the next map.

The scoring scheme for the game is as follows (Summarized in Figure 4.10). Each

player is awarded 50 points for correctly identifying the plan as either optimal or

satisficing. Incorrectly identifying an optimal plan as suboptimal or vice versa would

cost them 20 points. Every request for explanation would further cost them 5 points,

while skipping a map does not result in any penalty. The participants were addition-

ally told that selecting an inexecutable plan as either feasible or optimal would result

in a penalty of 400 points. Even though there were no actual incorrect plans in the

dataset, this information was provided to deter participants from taking chances with

plans they did not understand well.

Each participant was paid $10 dollars and received additional bonuses based on

the following payment scheme –

- Scores higher than or equal to 540 were paid $10.

- Scores between 540 and 440 were paid $7.

- Scores between 440 and 340 were paid $5.

- Scores between 340 and 240 were paid $3.
User studies have also been undertaken to test the validity of many variants of model reconciliation,

including a warehouse scenario in (Sreedharan et al., 2019a) as well as logistics and travel scenarios

in (Sreedharan et al., 2019b).
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- Scores below 240 received no bonuses.

The scoring systems for the game was designed to ensure

• Participants should only ask for an explanation when they are unsure about the

quality of the plan (due to small negative points on explanations).

• Participants are incentivized to identify the feasibility and optimality of the

given plan correctly (large reward and penalty on doing this wrongly).

Each participant was shown a total of 12 maps (same maps as in Study–1). For

6 of the 12 maps, the player was assigned the optimal robot plan, and when they

asked for an explanation, they were randomly shown either MCE, PPE or MPE

explanation with regards to the robot model. For the rest of the maps, participants

could potentially be assigned a plan that is optimal in the human model (i.e. an

explicable plan) or somewhere in between as introduced in (Chakraborti et al., 2019f)

(referred to henceforth as the balanced plan) in place of the robot optimal plan6.

The participants that were assigned the optimal robot plan were provided an MCE,

PPE or MPE explanation, otherwise they were provided an empty explanation for

the explicable plan. Also note that for 4 out of the 12 maps the PPE explanation

cannot prove the optimality of the plan.

At the end of the study, each participant was presented with a series of subjective

questions as follows. The responses to each question were measured on a five-point

Likert scale.
6Note that of the 6 maps, only 3 had both balanced as well as explicable plans, the rest either

had a balanced plan or the optimal human plan. Note that balanced plans are indistinguishable

from the optimal plan from the point of view of the human. They are more useful to the robot

for trading of explanation and explicability costs. Hence, we did not expand on further results on

balanced plans here so as not to distract from the main focus of the chapter which is to evaluate

explanations as model reconciliation. A detailed treatise is available in (Chakraborti et al., 2019f).
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Q1. The explanations provided by the robot was helpful.

Q2. The explanations provided by the robot was easy to understand.

Q3. I was satisfied with the explanations.

Q4. I trust the robot to work on its own.

Q5. My trust in the robot increased during the study.

In total, we had 27 participants for Study–2, including 4 female and 22 male

between the ages of 19 to 31 (1 participant did not reveal their demographic).

Results

Figure 4.11 – As we mentioned before, the goal of this study is to identify if expla-

nations in the form of model reconciliation can convey to humans the optimality and

correctness of plans. Here, each participant was shown the 12 maps from Study-1

and each map was assigned a random explanation type (and in some cases different

plans). We wanted to identify whether the participants that asked for explanations

were able to come up with the correct conclusions. We chose to focus on participants

who decided to ask for explanations, as people who didn’t request for one may be

operating off of a model different from the presented one. If this was indeed the case,

results collected from these participants will not match the assumption required for

model reconciliation explanations.. This means that the subjects who asked for MCE

and MPE were able to correctly identify the plans as optimal, while the people who

received PPE were able to correctly classify the plan to either optimal or satisficing

(i.e. for all but 5 maps PPE is enough to prove optimality).

Figure 4.11 shows the statistics of the selections made by participants who had

requested an explanation. The right side inset shows the percentage (for every map

instance) of participants who selected the correct options (blue), the incorrect ones

(red) or simply passed (orange), while the left side shows the average across all 12
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maps. We notice that in general people were overwhelmingly able to identify the

correct choice. Even in the case of PPEs, where the explanations only ensured cor-

rectness (map instances 1, 2, 3, 8 and 11) the participants were able to make the

right choice. This is consistent with H1 and H2 and demonstrates that explanations

in the form of model reconciliation are a viable means of conveying the correctness

and optimality of plans – i.e. participants can differentiate between completeness and

incompleteness of explanations.

Figure 4.12 – These conclusions are further supported by results from the subjective

questionnaire (Figure 4.12). Most people seem to agree that the explanations were

helpful and easy to understand. In fact, the majority of people strongly agreed that

their trust of the robot increased during the study.

Figure 4.13 – We were also curious (H3) about the usefulness of explicable plans

(that are optimal in human’s model), i.e. if the subjects still asked for explanations

when presented with explicable plans. Figure 4.13 shows the percentage of times

subjects asked for explanations when presented with explicable versus robot optimal

plans. The rate of explanations is considerably less in case of explicable plans as

hypothesized. This matches the intuition behind the notion of plan explicability as

a viable means (in addition to explanations) of dealing with model divergence in

human-in-the-loop operation of robots.

It is interesting to see that in Figure 4.13 about a third of the time participants

still asked for explanations even when the plan was explicable, and thus optimal in

their map. We believe this is an artifact of the risk-averse behavior incentivized by

the gamification of the explanation process. This is to make sure that participants

were sufficiently invested in the outcome as well as mimic the high-stakes nature

of USAR settings to accurately evaluate the explanations. It is also an indication

of the cognitive burden on the humans who may not be (cost) optimal planners.
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Figure 4.11: Percentage of times Different Explanations (i.e. MCE / MPE / PPE)

Led to Correct Decision on the Human’s Part in Each Problem (the Aggregated Result

Is Shown on the Right). A “Correct Decision” Involves Recognizing Optimality of the

Robot Plan on Being Presented an MCE or MPE, and Optimality or Executability

(as the Case May Be) in Case of a PPE.
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Figure 4.12: Subjective Responses of Participants in Study–2.

Figure 4.13: Percentage of Times Explanations Were Sought for in Study–2 When

Participants Presented with Explicable Plans Versus Robot Optimal Plans with Ex-

planations.

While this is consistent with the spirit of H3, the finding is also somewhat indicative

of the limitations of plan explicability as it is defined in existing literature at the

moment (Chakraborti et al., 2019f). Thus, going forward, the objective function

should incorporate the cost or difficulty of analyzing the plans and explanations from

the point of view of the human in addition to the current costs of explicability and

explanations modeled from the perspective of the robot.

Interestingly, the participants also did not ask for explanations around 40% of the

time (c.f. Figure 4.13) when they “should have” (i.e. suboptimal plan in the human

model) according to the theory of model reconciliation. We noticed no clear trend
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here (e.g. decreasing rate for explanations asked due to increasing trust). This was

most likely due to limitations of inferential capability of humans and a limitation of

the existing formulation of model reconciliation as well. The overall results from the

study are also summarized in Table 4.5.

4.4.3 Discussion: Other Kinds of Explanations

As we mentioned before, there were some instances where the participants from

Study 1 generated explanations that are outside the scope of any of the explanation

types discussed in Section 4.2.2. These were marked as “Other” in Figure 4.6. In the

following, we discuss three cases that we found interesting.

Post-hoc explanations Notice that parts of an MCE that contribute to the exe-

cutability of a plan need not be explained in situations where the robot is explaining

plans that have already been done as opposed to those that are being proposed for

execution. The rationale behind this is that if the human sees an action, that would

not have succeeded in his model, actually end up succeeding (e.g. the robot had man-

aged to go through a corridor that was blocked by rubble) then he can rationalize

that event by updating his own model (e.g. there must not have been a rubble there).

This seems to be a viable approach to further reduce size (c.f. selective property of

explanations in (Miller, 2017a)) of explanations in a post-hoc setting, and is out of

scope of explanations developed here.

Identification of Explicit Foils Identification of explicit foils can help reduce the

size of explanations as well. In the explanations introduced in Section 4.2 the foil was

implicit – i.e. why this plan as opposed to all other plans. However, when the implicit

foil can be estimated (e.g. top-K plans expected by the human or in estimation of the
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Outcome Comments

Study-1

H1 3 Participants largely agreed that model reconcil-

iation was a necessary and sufficient part of the

explanation process.

H1a 3 Participants preferred explanations that are

complete, and preserve contrastive property

across multiple hypothesis.

H2 7 Participants did not care to minimize size of ex-

planations, i.e. exclude irrelevant details.

H2a 7 Explanations generated by participants in the

free form condition were largely of the form of

MPEs.

H2b 3 Participants did generate MCEs when their

communication capability was explicitly re-

stricted.

Study-2

H1 3 Participants could identify the optimality of the

given plan with complete explanations.

H2 3 Participants could identify suboptimality of the

given plan for incomplete explanations.

H3 3 / ? Some participants asked for explanations even

for explicable plans, though the majority did

not.

Table 4.5: Summary of Results from the User Studies.
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mental model from the foil as done in (Sreedharan et al., 2018c, 2021d; Valmeekam

et al., 2020)) then the explanations can only include information on why the plan

in question is better than those other options (which are either not executable or

costlier). Some participants provided explanations contrasting some of these foils in

terms of (and in addition to just) the model differences.

Cost-based reasoning Finally, a kind of explanation that was attempted by some

participants involved a cost analysis of the current plan with respect to foils (in

addition to model differences, as mentioned above). Such explanations have been

studied extensively in previous planning literature (Fox et al., 2017; Smith, 2012) and

is still relevant for plan explanations on top of the model reconciliation process.

4.5 Related Work

We started out in the introduction with the premise that plan explanations cannot

be a soliloquy but is rather a means of reconciling differences between the AI model

and the user expectations or the mental model of the user, thereby establishing com-

mon grounds with the human in the loop (Allan, 2013). Much of the work we cited

there assume that the model of the planner and the end user are the same. This does

not bear out in many applications and we saw some examples of this above. While

we referred to relevant work on that topic in the course of our presentation wherever

necessary, for a more detailed treaties of the evolution of the world of explainable AI

planning, we refer the reader to Chapter 22.

One particular work we want to expand on a bit more here is a recent survey on

lessons learned from social sciences on the dynamics of the explanation process in

human-human interactions. Miller (2017a) outlines three key properties of explana-

tions – social (in being able to model the explainee’s expectations), contrastiveness
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(the ability to contrast potential foils), and selectiveness (to prioritize model details

for explanations). Our approach is inherently social (by explicitly accounting for the

mental model of the explainee). We also spent a fair bit of time expounding on the

contrastive property in the chapter, while our method of selection is determined by the

minimality and monotonicity criterion.7 While the contrastive property has been the

subject of much interest in the explainable AI planning community of late (Hoffmann

and Magazzeni, 2019; Miller, 2018), to the best of our knowledge, the model recon-

ciliation process remains the only existing plan explanation process that conforms

to all three properties of social, contrastiveness, and selectiveness of explanations, as

outlined by Miller (2017a).

Our view of explanation as a model reconciliation process is further supported by

studies in the field of psychology which stipulate that –

“. . . explanations privilege a subset of beliefs, excluding possibilities in-

consistent with those beliefs. . . can serve as a source of constraint in rea-

soning. . . ” (Lombrozo, 2006)

This is achieved in our case by the appropriate change in the expectation of

the model that is believed to have engendered the plan in question. Furthermore,

Lombrozo (2012) also underline that –

“. . . explanations are typically contrastive. . . the contrast provides a con-

straint on what should figure in a selected explanation. . . ” (Lombrozo,

2012)

7As we mentioned before, since minimal explanations in the model reconciliation framework are

not unique, the selectiveness criterion can be further explored (Zahedi et al., 2019) in the context of

preferences over logically equivalent explanations. Recent work exploring the representation of plan

properties for purposes of explanation (Eifler et al., 2020b) can also help in this cause.
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This is especially relevant in order for an explanation to be self-contained and

unambiguous. Hence the requirement of optimality in our explanations, which not

only ensures that the current plan is valid in the updated model, but is also better

than other alternatives. This is consistent with the notion of optimal (single-model)

explanations investigated by Sohrabi et al. (2011a) where less costly plans are referred

to as preferred explanations. The optimality criterion, and argumentation over the

human mental model, makes the problem fundamentally different from model change

algorithms discussed by Göbelbecker et al. (2010); Herzig et al. (2014); Eiter et al.

(2010); Bryce et al. (2016); Porteous et al. (2015) which focus more on the feasibility

of plans or correctness of domains, or tackle model extensions in general without

consideration of the human expectations i.e. the human mental model, and the

constrastive property of potential foils in it.

The field of epistemic reasoning is also closely related to model reconciliation ex-

planations as studied within this chapter. In fact, works like (Shvo et al., 2020), have

already used the epistemic reasoning framework to generalize model reconciliation

beyond just classical planning problems. In (Sreedharan et al., 2020a) (Covered in

Chapter 18) we also leveraged tools from epistemic planning (Miller, 2017b; Muise

et al., 2015) to incorporate the reasoning about model reconciliation explanations

into the planning process through the notion of “explanatory actions” or robot ac-

tions with purely epistemic effects that result in the update of the human’s belief

regarding the robot model.

4.6 Concluding Remarks

In this chapter we established the basic framework for model reconciliation and

investigated a few specific types of model-reconciliation explanations. In the remain-

der of Part-I of the thesis, we will be revisiting the problem of generating minimally
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complete explanations. In particular, we will investigate how one could approximate

the generation of such explanations while relaxing some of the core assumptions made

by the framework described in this chapter.
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Chapter 5

COMPLEXITY OF GENERATING MINIMALLY COMPLETE EXPLANATIONS

In the previous chapter we established the basic framework of model reconciliation

explanation and we presented some basic algorithms for generating various types of

model reconciliation explanations. However, in the previous chapter we made no

attempt to establish the computational complexity of this problem. This chapter is

aimed at addressing that specific shortcoming.

Specifically, we will formalize a decision-version of the minimal explanation prob-

lem studied there and show that this decision problem is in fact Σp
2-complete. The

proof will focus on mapping the explanation problem to that of establishing the satisfi-

ability of a particular subclass of quantified boolean formulas. Specifically, one where

the quantification is restricted to a set of existentially quantified variables followed

by a set of universally quantified variables. The reduction for the membership proof

will leverage the universal quantification in the formula to capture the optimality

test that is a central part of the explanation generation problem and the existentially

quantified variables to capture the explanation. While in the case of the hardness

proof, we will use the optimality test to capture the universal quantification and the

explanation to capture the existential one.

5.1 Technical Background

We start by providing a brief introduction to some of the relevant complexity

classes we will be considering in this chapter and compiling planning into satisfiability

problem. Note that the planning models considered for the complexity proof will stay

pretty much the same as the previous chapter, except for the fact that we will allow
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for explicit negative preconditions.

5.1.1 Relevant Complexity Classes

While many of the standard results related to classical planning tend to either

fall into NP or PSPACE classes (Bylander, 1994), the problem studied here focuses

on a class that is placed between these classes. Figure 5.1 presents a diagrammatic

overview of the respective classes and their relationships.

Figure 5.1: A Diagram Illustrating the Relationship of Relevant Complexity Classes.

Note That Σp
2 Is a Member of the Polynomial Hierarchy.

One way to view NP problems, is in terms of the existence of a witness or certificate

that can be verified in polynomial time. Following Definition 2.1 by Arora and Barak
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(2009), a language L is said to be in NP if

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|)

such that M(x, u) = 1,

where M is a polynomial time Turing machine, p a polynomial and u is the witness.

On the other hand, a language L is said to be in Σp
2 (Arora and Barak, 2009, Definition

5.1) if

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) ∀v ∈ {0, 1}p(|x|)

such that M(x, u, v) = 1,

where M is again a polynomial time Turing machine. Another way to view Σp
2 is in

terms of oracle machines. In fact Σp
2 can be represented equivalently as NPNP , and can

be understood as problems that could be solved by a non-deterministic polynomial

time Turing machine with an NP oracle.

The canonical Σp
2-complete problem is the special subclass of quantified boolean

formula called QSAT2 (Stockmeyer, 1976), where QSAT2 corresponds to the question

of satisfiability of a formula of the form

∃X∀Y φ,

where X and Y are vectors over boolean variables and φ is a propositional formula

defined over X and Y . Note that per Theorem 4.1 (1) from Stockmeyer (1976),

QSAT2 is complete for Σp
2 regardless of the form. This fact is exploited in our mem-

bership proof as we map the PMRE to a quantified boolean formula which is not

necessarily in either CNF or DNF form. In fact, in the formula used for the mem-

bership proof, while φ1(X) and φ3(X,Z) are in CNF, the subformula ¬φ3(X, Y ) is a

negation. Additionally, Theorem 4.1 (2) by Stockmeyer (1976) also shows that the

subset QSAT2 ∩ 3-DNF is also complete for Σp
2. So in our hardness proof rather than
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reducing arbitrary quantified boolean formulas into a PMRE , we focus on reducing

an instance from the set QSAT2 ∩ 3-DNF.

The polynomial hierarchy (PH) is formed by taking the union over the various

classes of the form ΣP
i , where each class ΣP

i is defined in the above form with i

alternating existential and universal quantifiers (starting with an existential quantifier

as in the case of ΣP
2 ). Each level in this hierarchy can be characterized by a problem

of satisfying a corresponding subclass of quantified boolean formula.

Finally, let us look at the PSPACE complexity class, which covers all the problems

that can be solved by a Turing machine with polynomial space (Arora and Barak,

2009). A PSPACE-complete problem is the satisfiability of a TQBF or True Quan-

tified Boolean Formula, where no restriction is placed on the quantification over the

variables. While it is known that PH ⊆ PSPACE holds, the problem of establishing

PH 6= PSPACE remains an important open problem (or question, as it’s not known

yet). In fact if, PH = PSPACE, it is known that the polynomial hierarchy collapses

to some finite level (Papadimitriou, 1994).

5.1.2 Encoding Planning Problems as SAT

A popular way of solving planning problems, particularly when there exists a

planning horizon (say T ), is to encode it as propositional satisfiability problems (SAT)

(Kautz et al., 1996). The most common encoding for the problem uses propositional

variables to capture whether a fluent is true at each possible time step and whether

an action was executed at a time step. If M is the planning model, then we would

have T × (|FM| + |AM|) variables. The encoding has three important classes for

clauses (a) clauses that describe a component of a model, i.e, initial state, goal, or

action definition, (b) explanatory frame axioms that enforce the requirement that any

change in variable value should correspond to the execution of an action that could
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have caused the change and finally (c) clauses to enforce the fact that concurrent

action execution is not possible. For example, let ai ∈ AM and p ∈ addM(a), then as

part of class (a) of clauses you would have clause of the form ati ⇒ pt+1, for all time

steps t. Similarly, an example of an explanatory clause for p would be

¬pt ∧ pt+1 ⇒
∨
{ati|p ∈ addM(a)}

Effectively the clause asserts that p could only have been turned true if one of these

actions was executed. Finally, we assert that the actions cannot be executed concur-

rently using the clause ∧
a∈A

(at ⇒
∧

aj∈A,aj 6=a

¬atj)

5.2 Complexity Results for Model Reconciliation Explanation Problems

We are interested in the computational complexity of solving model reconcilia-

tion explanation problems. It is however rather obvious that checking whether any

solution exists is a trivial problem:

Proposition 7. Let PMRE = 〈MR,MR
h , π

∗
R〉 be a model reconciliation explanation

problem. The question whether there exists a valid explanation can be decided in

constant time. More precisely, the answer is always yes.

The reason why the answer is always yes is because we could always simply com-

pute the difference between the sets Γ(MR
h ) and Γ(MR) and present these differences

as explanation. (And we know that this is always possible, so we don’t need to do so

just to decide whether this explanation exists – it always does.) Thus, computing such

an explanation is harder than deciding whether one exists; computing it is a linear

problem. This corresponds to the class of explanation called model patch explanation

presented in Chapter 4.
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While model patch explanations are technically correct, they might in practice not

be the best explanations as it would involve resolving differences that are irrelevant, in

that they didn’t cause confusion. Recall that the reason for the necessity of explaining

something is that the robot’s plan either isn’t even a plan at all in the human’s model,

or just not optimal. So any explanation should restrict to finding reasons pointing to

any of these facts.

Thus, what we are interested in is finding a minimal explanation, i.e., we want to

present an explanation to the human user that involves the fewest possible number of

model changes so that the observed plan is an optimal solution in his/her model – even

if there are still some differences to the robot’s model (of which the human would

then still be unaware of). This corresponds to Minimally Complete Explanations

discussed earlier.

To turn this optimization problem into a decision problem, we introduce (as it is

usually done) an additional parameter representing the criterion that’s being opti-

mized – in our case the number of performed changes. Formally:

Definition 11. For a given model reconciliation explanation problem

PMRE = 〈MR,MR
h , π

∗
R〉,

we define the optimal model reconciliation explanation decision problem as:

Given PMRE and a natural number k ∈ N∪{0}, does there exist a valid explanation

E = 〈ε+, ε−〉 for PMRE, such that |ε+|+ |ε−| = k? (We call this MRE-k.)

We are going to show that the problem is Σp
2-complete, which we show in the next

two sections, one showing membership, the other showing hardness.

To prove the computational complexity, we will focus on the canonical Σp
2 complete

problem called QSAT2 (Stockmeyer, 1976), where QSAT2 corresponds to the question

of satisfiability of a formula of the form ∃X∀Y φ, where X and Y are disjoint sets
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of boolean variables and φ is a propositional formula defined over X and Y . When

we focus on specific forms propositional formula, say 3-DNF, we will denote it as

QSAT2 ∩ 3-DNF.

5.2.1 Membership Proof

Our first task would be to establish the fact that MRE-k is in a fact a member

of the complexity class Σp
2. We will do so by reducing the problem into a QSAT2

problem. In particular, by mapping a model reconciliation explanation problem

PMRE = 〈MR,MR
h , π

∗
R〉 into QSAT2 of the form

∃X,Zφ1(X) ∧ ¬(∃Y φ2(X, Y )) ∧ φ3(X,Z),

such that |X| = k·|E+∪E−|, where E+ = Γ(MR)\Γ(MR
h ) and E− = Γ(MR

h )\Γ(MR)

are the set of propositional variables that will capture the possible individual model

updates, Y corresponds to the propositional variables required to encode a planning

problem where the maximum plan length is limited to |π∗R| − 1 that will be used to

capture the possible shorter plans and Z includes the propositional variables required

to encode a planning problem where the maximum plan length is limited to |π∗R| which

will be used to encode the validity of π∗R. Following the variables, φ1(X) is a CNF

formula that enforces the fact that only explanations of size k are possible, φ2(X, Y )

is a CNF formula that encodes whether given the explanation a plan of length |π∗R|−1

can achieve the goal in the updated model and finally, φ3(X,Z) is a CNF formula that

encodes whether given the explanation π∗R is valid in the updated model. Applying

the negation and moving the quantification upfront, we get the pre-nex QSAT2 form

∃X,Z∀Y φ1(X) ∧ ¬φ2(X, Y ) ∧ φ3(X,Z)

Now the important parts of this compilation are encoding the enforcement of expla-

nation length (through φ1(X)) and encoding planning models in such a way that they
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can reflect the effects of model updates captured by a particular instantiation of X

variables (used in φ2(X, Y ) and φ3(X,Z).

Encoding Explanation Length

The variable set X consists of k propositional variables for each individual model

update, i.e,

X =
⋃

τi∈E+∪E−
{τ 1
i , ..., τ

k
i },

where each τmi can be thought of as capturing the fact that the model update τi

is applied at step m. Now our requirement is to enforce that only a single model

update is applied at a given step. This is exactly done by φ1(X), where φ1(X) is a

conjunction of clauses of the form

τmi ⇒
∧

τj∈E+∪E−∧τj 6=τ1

¬τmj .

φ1(X) will contain a clause for every pair of model updates τi, τj ∈ E+ ∪ E− and

every step m ∈ {1, ..., k}). Now φ1(X) cannot be true if for any step more than one

model update variable is true.

Encoding Planning Models Conditioned on Model Updates

Now the second part of the encoding requires that we have a way to capture the

horizon-limited planning problem, that reflects the model updates captured by a given

instantiation of X. This will be used in both φ2(X, Y ) and φ3(X,Z). The encoding

will be based on the planning-as-SAT encoding discussed by Kautz et al. (1996). Let

φMT be the unmodified original SAT encoding (in CNF form) corresponding to a model

M = 〈F,A, I,G〉 for a planning horizon T . φMT consists of propositional variables for

each fluent and action indexed by possible time steps, i.e., it contains T × (|F |+ |A|)

variables. Now we can broadly divide the clauses in φM into three categories, (a)
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formulas capturing a model component, say action preconditions, effects, initial state

and goal (specifically, there exists a model parameter τ ∈ Γ(M) for every clause), (b)

explanatory frame axioms (that ensures that every state change is accounted for in

terms of an action execution) and (c) formulas to enforce the fact that at any time

step only one action is executable.

To allow for the model update, we will start with setting the encoding to be equal

to the human model (φP
MRE

T = φ
MR

h
T ). We first augment the model component clauses

in this model. Specifically, let ψ be a clause corresponding to a model component that

is part of the human model but not part of the robot model, and let the corresponding

model parameter be τj ∈ E−. Then we replace ψ in φP
MRE

T with a clause

(¬τ 1
j ∧ ... ∧ ¬τ kj )⇒ ψ,

This clause captures the fact that if the model component is not removed in the k

explanation steps, then the model component should be considered when coming up

with the plan. Note that this is still a clause as conjunction is on the left side of the

implication.

Let ψ′ be a clause corresponding to a model component that is part of the robot

model but missing from the human model, with a corresponding model parameter be

τj ∈ E+. We add a conjunction of the form given below to φP
MRE

T

(τ 1
j ⇒ ψi) ∧ ... ∧ (τ kj ⇒ ψ′)

That is, the model component needs to hold if the corresponding explanation is

provided at any explanation step.

Now we will remove all the original explanatory frame axioms and add one that

covers action definitions from both models, i.e., for ever fluent f ∈ FM
R

and each

time step m up to T − 1 we add a clause of the form ¬fm ∧ fm+1 ⇒ Afadd , where
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Afadd = {a | a ∈ AMR ∧ f ∈ addM
R ∪ addM

R
h }. We can similarly add an explanatory

fluent for the deletes.

Now to account for the explanation, we will add new clauses that will ensure that

to use any previously missing adds or deletes at a time step, the respective model

update should be performed at some explanation step or not performed at all if it was

an effect that was not part of the robot model. Finally we leave the action exclusion

clauses unmodified in the new model φP
MRE

T . This is sufficient as the human, robot and

updated model all share the same action names. We can now see that this encoding

is equivalent to the updated model.

Proposition 8. Let ~x be a specific instantiation of the variable X corresponding

to a model update E = 〈ε+, ε−〉, such that ε+ = {τ1, ..., τr}, ε− = {τ̄1, ..., τ̄p} and

|ε+|+ |ε−| = k. Now let φ~x(X) be a logical conjunction of the form

x1
τ1
∧ ... ∧ xrτr ∧ x

r+1
τ̄1
∧ ... ∧ xkτ̄p

Now for the combined logical formula

φ~x(X) ∧ φ1(X) ∧ φPMRE

T ,

every instantiation of propositional variables that satisfies the formula corresponds to

a plan for MR
h + E.

This fact should be obvious from the validity of the original encoding. Any

differences in the encoding are only those related to the explanations. For exam-

ple, in the new encoding the enforcement of a positive precondition f for an ac-

tion al at time step m that could be removed by a model update is going to be,

¬τ 1 ∧ ...¬τ k ⇒ (aml ⇒ fm−1), where τ = al-has-pos-prec-f . So if τ i is set true at any

of the k sets then the precondition needs no longer to be satisfied.
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We get φ2(X, Y ) by using the φP
MRE

T encoding but for time horizon |π∗R|−1 (the en-

coding also includes NOOP actions to allow for shorter plans) and we define φ3(X,Z)

to be equal to

φP
MRE

|π∗R|
(X,Z) ∧ φπ∗R ,

where φπ∗R = a1
1 ∧ ...a

|π∗R|
|π∗R|

, aii is the variable in Z corresponding to the ith action in

plan π∗R for time step i.

Lemma 1. A given problem PMRE has a k-sized explanation if and only if

∃X,Z∀Y φ1(X) ∧ ¬φ2(X, Y ) ∧ φ3(X,Z)

is satisfiable.

This follows directly from the construction and Proposition 8. The formula is

only satisfied if there exists an instantiation of X corresponding to an explanation of

length k (enforced by φ1(X)) that allows for the validity of the current plan (enforced

by φ3(X,Z)) and doesn’t allow for any shorter plans (enforced by ¬φ2(X, Y )). This

leads us to:

Theorem 1. MRE-k is in Σp
2

5.2.2 Hardness Proof

To prove that the problem MRE-k is Σp
2-hard, we will provide a polynomial

reduction of a QSAT2 ∩ 3-DNF instance (which has been shown to be Σp
2-complete

(Stockmeyer, 1976)) into a k-bounded Model Reconciliation Explanation problem

PMRE thus solving MRE-k. To present the reduction, consider an arbitrary QSAT2∩

3-DNF instance ∃X∀Y φ, where φ is a disjunction consisting of N disjcunts (i.e.,

conjunctions) denoted as C1, .., CN (each of size 3 as φ is in 3-DNF) defined over the

propositions in X and Y .
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As mentioned earlier, we will map the problem of checking the satisfiability of a

propositional formula over a universal quantification to that of an optimality check.

In particular, we will construct a planning model where the plan space covers the

space of all possible instantiations of the universally quantified variables. We then

establish the satisfiability of the universally quantified formula by showing that no

plan (i.e., a specific instantiation of the variables) can satisfy the negation of the

formula. This follows from the fact that

∀Y φ ⇐⇒ ¬(∃Y ¬φ)

Though in our case, there is not only a universally quantified variable set Y but

an existentially quantified variable set X. We will map this existentially quantified

variable set into the initial state of the problem and will allow the model reconciliation

problem to select any possible instantiation of X as part of the explanation. Thus

mapping the problem to

∃X∀Y φ ⇐⇒ ∃X¬(∃Y ¬φ)

That is, a valid explanation will show that there exists an initial state for which

there exists no shorter action sequence that can satisfy the goal ¬φ. We will also add

some additional constraints in the two models that will form our model reconciliation

explanation problem PMRE
QSAT to ensure that the plan being explained will be optimal

after all the differences between the models have been resolved.

The exact construction of the PMRE
QSAT problem is given below. Let us first start by

defining the fluent set and the action names. Let the fluent set F be defined as

F = FX ∪ FY ∪ FN ∪ FG ∪ FD1 ∪ FD2 ,

where FX and FY are the sets of fluents corresponding to X and Y , respectively (i.e.,

we could just set FX = X and FY = Y ), FN consists of a fluent per disjunct in φ
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(i.e., we could just set FN = {C1, . . . , CN}), FG = {g} contains a single goal fluent

to be used by the models, FD1 is a set of dummy fluents such that |FD1 | = |X| + 1

and FD2 is a second set of dummy fluents such that |FD2 | = |Y | + N + 1. Now

the action names A to be shared between the two models would be such that |A| =

|Y |+3 · |FN |+ |FD2|+ |FD1|+1, where we would have an action for each of the fluents

in the corresponding fluent subsets Y and FD2 , and an action for each conjunction of

the propositional formula φ. Finally, there are |FD1| + 1 “goal actions”, where there

are |FD1| goal actions by which the goal can be established if ¬φ can be achieved and

there is one goal action to be used as part of π. Specifically, we will represent the

action names as follows

A = AY ∪ A¬φ ∪ A(G,¬φ) ∪ AD2 ∪ A(G,D2)

Now we will define a model reconciliation explanation problem PMRE
QSAT = 〈M1,M2, π〉.

The models are defined as M1 = 〈F,A, IM1 , G〉 and M2 = 〈F,A, IM2 , G〉, where

IM1 = X and IM2 = FD1 . Note that the models only differ in their initial states.

We will now go on defining each of the actions. Starting with AY , an action

aiY ∈ AY (for a variable yi ∈ Y ) is defined by pre+(aiY ) = pre−(aiY ) = ∅, add (aiY ) =

{f iY }, and del (aiY ) = ∅. That is, the action definition for aiY is empty but for a single

add effect that sets the fluent corresponding to the variable yi true (f iY ∈ FY ).

Next come the actions in A¬φ, which will help us test whether for a given instan-

tiation of X and Y , the negation of the propositional formula ¬φ(x, y) is satisfiable.

Note that when we negate the 3-DNF φ, we obtain a 3-CNF ¬φ, where each (ith)

conjunction Ci gets turned into a disjunction (clause) C ′i given by {pi1, pi2, pi3} (where

the literals got inverted, i.e., switched from negated to positive and vice versa). Now

for each literal in C ′i we will define an action ai,j¬φ, 1 ≤ j ≤ 3, as follows.

• if pij is positive we have:
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pre+(ai,j¬φ) = {f jX∪Y }, pre−(ai,j¬φ) = ∅,

add (ai,j¬φ) = {f iN}, and del (ai,j¬φ) = ∅

• and if pij is negative then we define it as

pre+(ai,j¬φ) = ∅, pre−(ai,j¬φ) = {f jX∪Y },

add (ai,j¬φ) = {f iN}, and del (ai,j¬φ) = ∅,

where f iN ∈ FN is an indicator variable identifying whether the clause C ′i is satisfied

and f jX∪Y ∈ FX∪FY is the fluent corresponding to the proposition. That is, the fluent

becomes a positive precondition if it was a positive literal in the clause (resulting from

negating the conjunction), otherwise it becomes a negative precondition. If at least

one of the literals in the clause is satisfied the clause is satisfied (captured by the add

effect).

Now one way for the goal g to be satisfied would be to satisfy all the negated

clauses in φ, which is captured by the set of actions A(G,¬φ) = {a1
(G,¬φ), ..., a

|X|+1
(G,¬φ)}.

Here we have a possible goal action for each fluent in FD1 . The actions here are defined

such that pre+(ai(G,¬φ)) = FN ∪ {f iD1
}, pre−(ai(G,¬φ)) = ∅, add (ai(G,¬φ)) = {g}, and

del (ai(G,¬φ)) = ∅, where f iD1
∈ FD1 . As we will see, once we complete the mapping of

the satisfaction problem into the explanation problem, all the shorter action sequences

that the explanation would need to invalidate would use these goal generating actions.

The optimal plan π that needs to be explained is given by π = 〈a1
D2
, ..., a

|FD2
|

D2
, a(G,D2)〉.

This plan contains all the actions that are part of AD2 = {a1
D2
, ..., a

|FD2
|

D2
} and A(G,D2) =

{a(G,D2)}, such that

• pre+(aiD2
) = pre−(aiD2

) = ∅, and for all f iD2
∈ FD2 :

add (aiD2
) = {f iD2

}, del (aiD2
) = ∅, and

• pre+(a(G,D2)) = FD2 , pre−(a(G,D2)) = ∅,

add (a(G,D2)) = {g}, and del (a(G,D2)) = ∅.
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This brings us to the important properties (captured by the following propositions

and lemmata) that will let us establish the soundness of the reduction.

Proposition 9. π is optimal in M2.

In M2 none of the variables in FD1 are true, neither can any action turn it true.

Thus none of the goal actions in A(G,¬φ) can be used, leaving the model to use all

actions in π to achieve the goal.

Proposition 10. One can reach a state that captures (in terms of the truth values

of FY ) any possible instantiation of the variables Y by a plan of length less than

|π| −N − 1.

The proposition follows directly given the size of |AY | and the fact that the actions

in this set do not have preconditions.

Proposition 11. Any possible instantiation of the variables X can be captured by the

initial state of the updated model formed from a model update of size |X|.

Note that the model update takes the form of 〈ε+, ε−〉, such that ε+ ⊆ X and

ε− ⊆ FD1 . Thus one can create an explanation that sets some subset of X ′ ⊆ X true,

by making ε+ equal to that subset (in terms of FX) and selecting a subset of FD1

as ε−, such that |ε−| = |X| − |ε+|. Since |FD1 | = |X| + 1 and |ε−| is a non-negative

number upper-bounded by |X|, we can always find a subset of FD1 of size |X| − |ε+|.

Proposition 12. For a model update E = 〈ε+, ε−〉, where Xε+ contains the val-

ues from X corresponding to the update, there exists an action sequence π′ that is a

valid plan in M2 + E such that |π′| < |π|, if and only if there exists some instantia-

tion of variables Y (say Y π′), such that for Xε+ and Y π′ it satisfies ¬φ (denoted as

(Xε+ , Y π′) |= ¬φ).
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This follows directly from the fact that an action sequence of length less than |π|

can only satisfy the goal by using an action in A¬φG , which requires satisfying all the

clauses in ¬φ. Similarly all instantiations of Y and testing validity of ¬φ can be done

in less than |π| steps, which brings us to the lemma:

Lemma 2. For the model reconciliation explanation problem PMRE
QSAT = 〈M1,M2, π〉,

there exists a valid explanation of size |X| if and only if the corresponding QSAT2

∃X∀Y φ is satisfiable.

Proof. This lemma can be directly built from the previous three propositions. If there

exists a valid explanation of size |X| that means no plan of size less than |π| is valid,

that means there exists an instantiation of variables X (say XE), such that for all

instantiations Y ′ of variables Y , we have

(XE , Y ′) 6|= ¬φ

which means, we have for all Y ′ of Y

(XE , Y ′) |= φ

Similarly if the QSAT2 formula was not satisfiable, then for every XE we should have

at least one instantiation Y ′ for which (XE , Y ′) |= ¬φ. In the updated model we can

now construct a plan that corresponds to Y ′ and the evaluation of ¬φ for Y ′ which

should satisfy an action in A¬φG .

Which bring us to the theorem.

Theorem 2. MRE-k is Σp
2-hard

This theorem follows directly from Lemma 2 and the fact that QSAT2 ∩ 3-DNF

is Σp
2-complete. Finally, Theorem 1 and Theorem 2 brings us to our central result.

Theorem 3. MRE-k is Σp
2-complete
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5.3 Related Work

While the complexity of the original model-reconciliation explanation has gone

unexplored, there are complexity results from related problems that give us some

clues about the actual complexity. For one, Sreedharan et al. (2020a) (also discussed

in Chapter 18), showed PSPACE-completeness for providing a plan and a set of

model updates such that the plan is valid in both the robot and the updated human

model. Of course, here there is the additional complexity of identifying the plan

and the problem overlooks the complexity of establishing the optimality, a central

concern in the original model reconciliation formulation. On the other hand, Lin and

Bercher (2021) established that the complexity of updating the model (with any or a

minimal number of changes) ensuring the validity of a given plan is an NP-complete

problem (for most cases, only a few are in P). However, they do not constrain the

model updates to those that align with the target robot model directly, as this is only

implicitly provided via the plan that’s supposed to be valid. Finally, Vasileiou et al.

(2021), looked at a variant of model reconciliation that is framed as the problem of

finding the shortest logical support of a given propositional formula in the context

where the human and robot model are represented as propositional knowledge bases.

They discuss a possible membership of this problem in the Σp
2 class, but unfortunately,

again the problem they define is different from the one studied in Chapter 5. Vasileiou

et al. (2021) looked at a case where there exists a knowledge base associated with the

system KBa and one associated with the human KBh and there is a logical formula φ

that needs to be explained such that KBa |= φ and KBh 6|= φ. The explanation here

takes the form of a support ε ⊆ KBa ∧KBh such that KBh ∧ ε |= φ (as discussed by

Vasileiou et al. (2021) in Definition 7). Given the generality of this formulation, one

could map explanations for a classical planning problem partially into this framework,
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however it is not the exact problem studied in Chapter 5.

The first point to note is the fact that the explanation here doesn’t support re-

moval of rules from the human’s knowledge base, a key form of model update discussed

in Chapter 5. While the definition does not allow for such a change, their algorithm

(Algorithm 2) does include an ad-hoc test for satisfiability of KBa ∧ KBh and the

algorithm allows for the removal of formulas from KBh if the conjunction is unsatis-

fiable. But this doesn’t cover all the changes that are supported in Chapter 5. For

example, consider a case when an action a has an additional add effect e in the human

knowledge base, which manifests in the form of two rules, a rule of the form

ai ⇒ ei

and a rule in the explanatory frame axiom that says a is a possible action that can

satisfy the transition from ¬e∗ to e∗. In this case, the problem encoding of length n

(n being the length of the plan being explained), the formula KBa ∧KBh needs not

be unsatisfiable, especially if the plan being explained is not using a or e. However

this rule could prevent some φ, say there doesn’t exist a plan of length shorter than n,

from being entailed without its removal. For example, let there be an action a2 that

directly sets the goal true if e is satisfied and there are no actions in KBa that could

have satisfied e. Now without removing this additional add effect there will always be

a shorter plan. Unfortunately, after the first satisfiability test Vasileiou et al. (2021)

don’t provide any other way of removing rules from the human’s knowledge base.

Next the paper breaks down the problem of explaining optimality of the plan into

two separate problems. First it explains the validity and then it explains optimality.

For explaining validity they mention adding the plan and the goal as constraints into

the planning model as additional clauses and then testing for satisfiability. If the

encoding is unsatisfiable, the authors mention that they “add the missing actions as
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part of the explanation” (Vasileiou et al., 2021, page 5). If this means they add all

missing information in KBh for actions in the plan, this will already result in more

information that the one considered in the original model reconciliation work (cf.

Chapter 5). However, if they have some procedure to find the minimal information

needed to be added to ensure optimality, this could still result in longer explanations.

This is because choices made to ensure validity has an impact on the information

needed to be provided to ensure optimality. As such the problem of finding model

updates to ensure validity and optimality cannot be separated. For example, consider

a case where the plan is invalid because a precondition for an action is unsatisfied

in the human model. Now assume there are two possible minimal updates to ensure

validity. One could say that the unsatisfied precondition is not part of that action in

the knowledge base KBh or there exists a previously missing effect of an earlier action

that can satisfy this precondition (though it’s not needed in KBa). However one could

build the rest of the model in such a way that adding the add effect information would

result in other shorter plans being feasible. Say there are actions which can satisfy

the goal directly whose only precondition in KBh is satisfied by this effect, while

those actions have extra preconditions in KBa. This means the choice to introduce

the add effect could make the explanation longer. Similarly we can create domains

where the choice to remove the precondition would result in longer explanations.

5.4 Concluding Remarks

One of the immediate points of interest is the comparison of the complexity of

model-reconciliation with the complexity of classical planning. When no information

about the problem to solve is given, worst case complexity is PSPACE-complete

(Bylander, 1994). Unless the polynomial hierarchy collapses the problem of model

reconciliation is thus easier than simple plan existence. This comparison is however
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not perfectly fair since in model reconciliation we have a plan given as an input thus

bounding possible changes. While bounded plan existence is still PSPACE-complete

since plan length can be bounded logarithmically, it turns NP-complete when encoded

unarily (thus simulating the situation of model reconciliation where the bound is not

given as number but explicitly via an input plan). Model reconciliation is thus harder

than the respective bounded plan existence problem unless the polynomial hierarchy

collapses.

Another consequence of the proof is the existence of an alternate problem for-

mulation for generating a minimally complete explanation, namely by mapping it to

QSAT2 of increasing explanation length. This means one could use fast quantified

boolean formula solvers to generate such explanations. One of the future directions

for the work may be to investigate whether the use of this compilation provides an

advantage over the A∗ model space search proposed by Chapter 4.
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Chapter 6

MODEL RECONCILIATION IN THE PRESENCE OF MODEL UNCERTAINTY

In the previous chapters, we formalized the framework of model reconciliation and

looked at the problem of generating minimal explanations. However, the version of

the framework and algorithms we studied made one central assumption, namely the

access to the human’s mental model MR
h . Although we made this assumption as a

first step towards formalizing the model reconciliation process, this can be hard to

achieve in practice. Instead, the agent may end up having to explain its decisions

with respect to a set of possible models which is its best estimation of the human’s

knowledge state learned in the process of interactions. Sets of possible models can be

concisely represented as planning models with annotations for possible preconditions

and effects (Nguyen et al., 2017; Bryce et al., 2016). In theory, the robot could

try to compute MCEs for each possible configuration, however this can result in

situations where the explanations computed for individual models independently are

not consistent across all the possible target domains. Thus, in the case of model

uncertainty, such an approach cannot guarantee that the resulting explanation will

be acceptable. Instead, in this chapter we will look at methods that take into account

the entire space of possible human models while generating the explanations. We will

also discuss how the method developed for generating explanation in the presence of

model uncertainty could be used to generate explanations for multiple users.
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6.1 Running Example: The Urban Search and Reconnaissance Domain

The second domain is a typical Urban Search and Reconnaissance (USAR) do-

main1 (Bartlett, 2015; Murphy et al., 2008) where a remote robot is put into disaster

response operation often controlled partly or fully by an external human commander,

as shown in Figure 6.1. The robot’s job is to scout areas that may be otherwise

harmful to humans and report on its surroundings as instructed by the external su-

pervisor. The scenario can also have other internal agents (humans or robots) with

whom the robot needs to coordinate. The USAR domain thus affords a rich set

of characteristics, such as multiple agents distributed in space, partial observability,

evolving domain models, and so on. The USAR domain is also ideal for visualizing to

non-expert participants in comparison to, for example, logistics-type domains which

should ideally be evaluated by experts. This became an important factor while de-

signing the user studies. The USAR domain is thus at once close to motion planning

as easily interpreted by non-experts but also incorporates typical aspects of task plans

such as preconditions and effects in terms of rubble removal, collapsed halls, etc. and

relevant abilities of the robot. As such, simulated USAR scenarios provide an ideal

testbed (Bartlett, 2015; Zhang et al., 2015; Talamadupula et al., 2014) for developing

algorithms for effective human-robot interaction.

Here, even though all agents start off with the same model – i.e. the blueprint

of the building – their models diverge as the internal agent interacts with the scene.

Due to the disaster new paths may have opened up due to collapsed walls or old paths

may no longer be available due to rubble. This means that plans that are valid and

optimal in the robot’s model may not make sense to the external commander. In the

1Video demonstrations of all examples in this domain can be viewed at https://ibm.box.com/

v/aij-model-reconciliation. (Duration 5:52)
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Figure 6.1: A Typical USAR Domain with an Internal Robot and an External Com-

mander.

scenario in Figure 6.2, the robot is tasked to go from its current location marked blue

to conduct reconnaissance in the location marked orange. The green path is most

optimal in its current model but this is blocked in the externals mental model while

the expected plan in the mental model is no longer possible due to rubble. Without

removing rubble in the blocked paths, the robot can instead communicate that the

path at the bottom is no longer blocked. This explanation preserves the validity and

optimality of its plan in the updated model (even though further differences exist).

6.2 Supporting Mental Model Uncertainty

As we mentioned before, we have assumed thus far that MR
h is known as a first

step towards formalizing the model reconciliation process. This is hard to achieve in

practice. Instead, the agent may end up having to explain its decisions with respect

to a set of possible models which is its estimation of the human’s knowledge state

learned in the process of interactions. For example, consider the work in (Bryce

et al., 2016) where model drift is tracked via filters in the form of a set of models,

or in (Nguyen et al., 2017) where a set of models is computed to fit to observed plan

traces. Such uncertainty or incompleteness over a model can be represented in the
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Figure 6.2: Model Differences in the USAR Domain.

form of annotated models or APDDL. (Nguyen et al., 2017) In addition to the standard

preconditions and effects associated with actions, it introduces the notion of possible

preconditions and effects which may or may not be realized in practice.

Definition: An Annotated Model is the tuple M = 〈F, A, I,G, C〉 – where F is a

finite set of fluents that define a state s ⊆ F , A is a finite set of annotated actions

– and annotated initial and goal states I = 〈I0, I+〉, G = 〈G0,G+〉; I0,G0, I+,G+ ⊆

F . Action a ∈ A is a tuple 〈pre (a), p̃re (a), add (a), del (a), ãdd (a), d̃el (a)〉 where in

addition to its known preconditions and add/delete effects pre (a), add (a), del (a),⊆ F

each action also contains possible preconditions p̃re (a) ⊆ F containing propositions

that it might need as preconditions, and possible add (delete) effects ãdd (a), d̃el (a) ⊆

F ) containing propositions that it might add (delete, respectively) after execution.

I0,G0 (and I+,G+) are the known (and possible) parts of the initial and goal states.

Finally, C is the cost associated with each action. We will generally assume the

models have unit cost function to simplify the discussion and not explicitly include
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it in the model definitions.

Each possible condition f ∈ p̃re (a)∪ ãdd (a)∪ d̃el (a) has an associated probability

p(f) denoting how likely it is to be a known condition in the ground truth model – i.e.

p(f) measures the confidence with which that condition has been learned. The sets

of known and possible conditions of a model M are denoted by Sk(M) and Sp(M)

respectively. An instantiation of an annotated model M is a classical planning model

where a subset of the possible conditions have been realized, and is thus given by

the tuple inst(M) = 〈F,A, I,G〉, initial and goal states I = I0 ∪ χ; χ ⊆ I+ and

G = G0 ∪ χ; χ ⊆ G+ respectively, and action A 3 a = 〈pre (a) ← pre (a) ∪ χ; χ ⊆

p̃re (a), (add (a)/del (a))← (add (a)/del (a))∪χ; χ ⊆ (ãdd (a)/d̃el (a))〉. Clearly, given

an annotated model with k possible conditions, there may be 2k such instantiations,

which forms its completion set. (Nguyen et al., 2017)

Definition: Likelihood L of instantiation inst(M) of an annotated model M is:

L(inst(M)) =
∏

f∈Sp(M)∧Sk(inst(M))

p(f) ×
∏

f∈Sp(M)\Sk(inst(M))

(1− p(f))

As discussed before, such models turn out to be especially useful for the represen-

tation of human (mental) models learned from observations, where uncertainty after

the learning process can be represented in terms of model annotations (Nguyen et al.,

2017; Bryce et al., 2016). Let MR
H be the culmination of a model learning process and

{MR
hi
}i be the completion set of MR

H . One of these models is the actual ground truth

(i.e. the human’s real mental model). We refer to this as g(MR
H). We will explore

now how this representation will allow us to compute conformant explanations that

can explain with respect to all possible mental models and conditional explanations

that engage the explainee in dialogue to minimize the size of the completion set to
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compute shorter explanations.2

Conformant Explanations

In this situation, the robot can try to compute MCEs for each possible configuration.

However, this can result in situations where the explanations computed for individual

models independently are not consistent across all possible target domains. Thus, in

the case of model uncertainty, such an approach cannot guarantee that the resulting

explanation will be acceptable.

Instead, we want to find an explanation such that ∀i π∗
M̂R

hi

≡ π∗MR (as shown in

Figure 6.3). This is a single model update that makes the given plan optimal (and

hence explained) in all the updated domains (or in all possible domains). At first

glance, it appears that such an approach, even though desirable, might turn out to

be prohibitively expensive especially since solving for a single MCE involves search in

the model space where each search node is an optimal planning problem. However, it

turns out that the same search strategy can be employed here as well by representing

the human mental model as an annotated model. Condition (3) for an MCE (c.f.

Section 4.2) now becomes –

(3) Cg(MR
h )(π) = C∗

g(MR
h )

This is hard to achieve since it is not known which is the actual mental model

of the human. So we want to preserve the optimality criterion for all (or as many)

2The purpose of this section is to demonstrate how existing notions of conditional and conformant

solutions in planning can be adopted for the explanation process equally well in the presence of

uncertainty over the human mental model. While there are significant differences between how

conditional or conformant explanations work with respect to their planning counterparts, it may be

worth exploring the state-of-the-art (Albore et al., 2009; Bonet and Geffner, 2005) in those fields to

further develop on the concepts introduced in the chapter.
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Figure 6.3: Model Reconciliation in the Presence of Model Uncertainty or Multiple

Explainees.

instantiations of the incomplete estimation of the mental model. Keeping this in

mind, we define robustness of an explanation for an incomplete mental models as the

probability mass of models where it is a valid explanation.

Definition: Robustness of an explanation E is given by –

R(E) =
∑

inst(M̂R
h ) s.t. C

inst(M̂R
h

)
(π)=C∗

inst(M̂R
h

)

L(inst(M̂R
h ))

Definition: A Conformant Explanation is such that R(E) = 1.

A conformant explanation thus ensures that the given plan is explained in all

the models in the completion set of the human model. Let’s look at an example.

Consider again the USAR domain (Figure 6.4), the robot is now at P1 (blue) and
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Figure 6.4: Back to Our USAR Scenario: The Robot Plan Is Marked in Blue and

Uncertain Parts of the Human Model Is Marked with Red Question Marks.

needs to collect data from P5. While the commander understands the goal, she is

under the false impression that the paths from P1 to P9 and P4 to P5 are unusable

(red question marks). She is also unaware of the robot’s inability to use its hands.

On the other hand, while the robot does not have a complete picture of her mental

model, it understands that any differences between the models are related to (1) the

path from P1 to P9; (2) the path from P4 to P5; (3) its ability to use its hands; and

(4) whether the it needs its arm to clear rubble. Thus, from the robot’s perspective,

the mental model can be one of sixteen possible models (one of which is the actual

one). Here, a conformant explanation for the optimal robot plan (blue) is as follows

–

Explanation >> remove-known-INIT-has-add-effect-hand_capable

Explanation >> add-annot-clear_passage-has-precondition-hand_capable

Explanation >> remove-annot-INIT-has-add-effect-clear_path P1 P9

Model-Space Search for Conformant Explanations

As we discussed before, we cannot launch an MCE-search for each possible men-

tal model separately, both for issues of complexity and consistency of the solutions.
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However, in the following discussion, we will show how we can reuse the model space

search from the previous section with a compilation trick.

We begin by defining two models – the most relaxed model possibleMmax and the

least relaxed one Mmin. The former is the model where all the possible add effects

and none of the possible preconditions and deletes hold, the state has all the possible

conditions set to true, and the goal is the smallest one possible; while in the latter

all the possible preconditions and deletes and none of the possible adds are realized

and with the minimal start state and the maximal goal. This means that, if a plan is

executable inMmin it will be executable in all the possible models. Also, if this plan

is optimal in Mmax, then it must be optimal throughout the set. Of course, such a

plan may not exist, but we are not trying to find one either. Instead, we are trying

to find a set of model updates which when applied to the annotated model, produce

a new set of models where a given plan is optimal. In providing these model updates,

we are in effect reducing the set of possible models to a smaller set. The new set need

not be a subset of the original set of models but will be equal or smaller in size to

the original set. For any given annotated model, such an explanation always exists

(entire model difference in the worst case), and we intend to find the smallest one.

MR
h thus affords the following two models –

Mmax = 〈F,A, I,G〉

- initial state I ← I0 ∪ I+; given I

- goal state G ← G0; given G

- ∀a ∈ A

- pre (a)← pre (a); a ∈ A

- add (a)← add (a) ∪ ãdd (a); a ∈ A
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- del (a)← del (a); a ∈ A

Mmin = 〈F,A, I,G〉

- initial state I ← I0; given I

- goal state G ← G0 ∪ G+; given G

- ∀a ∈ A

- pre (a)← pre (a) ∪ p̃re (a); a ∈ A

- add (a)← add (a); a ∈ A

- del (a)← del (a) ∪ d̃el (a); a ∈ A

As explained before, Mmax is a model where all the add effects hold and it is

easiest to achieve the goal, and similarlyMmin is the model where it is the hardest to

achieve the goal. These definitions might end up creating inconsistencies (e.g. in an

annotated BlocksWorld domain, the unstack action may have add effects to make

the block both holding and ontable at the same time), but the model reconciliation

process will take care of these.

Proposition 7 – For a given MRP Ψ = 〈π, 〈MR,MR
h 〉〉, if the plan π is optimal in

Mmax and executable inMmin,then conditions (1) and (3) from the definition of valid

model reconciliation explanation (as defined in Section 4.2) hold for all i.

This now becomes the new criterion to satisfy in the course of search for an MCE

for a set of models. We again reuse the state representation in Section 4.2.1. We

start the MEGA∗-Conformant search (Algorithm 3) by first creating the corresponding

Mmax and Mmin model for the given annotated model MR
H . While the goal test for

the original MCE only included an optimality test, here we need to both check the

optimality of the plan in Mmax and verify the correctness of the plan in Mmin. As
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stated in Proposition 7, the plan is only optimal in the entire set of possible models

if it satisfies both tests. Since the correctness of a given plan can be verified in

polynomial time with respect to the plan size, this is a relatively easy test to perform.

The other important point of difference between the algorithm mentioned above

and the original MCE is how we calculate the applicable model updates. Here we

consider the superset of model differences between the robot model and Mmin and

the differences between the robot model andMmax. This could potentially mean that

the search might end up applying a model update that is already satisfied in one of

the models but not in the other. Since all the model update actions are formulated

as set operations, the original MRP formulation can handle this without any further

changes. The models obtained by applying the model update to Mmin and Mmax

are then pushed to the open queue.

Proposition 8 –Mmax andMmin only need to be computed once – i.e. with a model

update E to M: Mmax ←Mmax + E and Mmin ←Mmin + E .

These models form the newMmin andMmax models for the set of models obtained

by applying the current set of model updates to the original annotated model. This

proposition ensures that we no longer have to keep track of the current list of models

or recalculate Mmin and Mmax for the new set.

Contingent Explanations

Conformant explanations can contain superfluous information – i.e. asking the human

to remove non-existent conditions or add existing ones. In the previous example, the

second explanation (regarding the need of the hand to clear rubble) was already known

to the human and was thus superfluous information. Such redundant information can

be annoying and may end up reducing the human’s trust in the robot. This can be
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Algorithm 3 MEGA∗-Conformant

1: procedure MCE-Search

2: Input : MRP 〈π∗, 〈MR,MR
h 〉〉

3: Output : Explanation EMCE

4: Procedure:

5: fringe ← Priority Queue()

6: c list ← {} . Closed list

7: π∗R ← π∗ . Optimal plan being explained

8: Mmax, Mmin ←(MR
h ) . Proposition 8

9: fringe.push(〈Mmin,Mmax, {}〉, priority = 0)

10: while True do

11: 〈M̂min,M̂max, E〉, c← fringe.pop()

12: if CM̂max (π∗R)=C∗
M̂max

∧ δM̂min
(IM̂min

, π∗R) |= GM̂min
then

13: return E . Proposition 7

14: else

15: c list ← c list ∪ 〈M̂max,M̂min〉

16: for f ∈ {Γ(M̂min) ∪ Γ(M̂max)} \ Γ(MR) do

17: λ← 〈1, 〈M̂min,M̂max〉, {}, {f}〉 . Removes f from M̂

18: if δMR
h
,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 6∈ c list then

19: fringe.push(〈δMR
h
,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),

E ∪ λ〉, c+ 1)

20: for f ∈ Γ(MR) \ {Γ(M̂min) ∪ Γ(M̂max)} do

21: λ← 〈1, {〈M̂min,M̂max〉, {f}, {}〉 . Adds f to M̂

22: if δMR
h
,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 6∈ c list then

23: fringe.push(〈δMR
h
,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),

E ∪ λ〉, c+ Cλ)
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avoided by –

- Increasing the cost of model updates involving uncertain conditions relative to

those involving known preconditions or effects. This ensures that the search

prefers explanations that contain known conditions. By definition, such expla-

nations will not have superfluous information.

- However, sometimes such explanations may not exist. Instead, we can convert

conformant explanations into conditional ones. This can be achieved by turning

each model update for an annotated condition into a question and only provide

an explanation if the human’s response warrants it – e.g. instead of asking the

human to update the precondition of clear passage, the robot can first ask if

the human thinks that action has a precondition hand usable. Thus, one way

of removing superfluous explanations is to reduce the size of the completion set

by gathering information from the human. Consider the following exchange in

the USAR scenario –

R : Are you aware that the path from P1 to P4 has collapsed?

H : Yes.

> R realizes the plan is optimal in all possible models.

> It does not need to explain further.

If the robot knew that the human thought that the path from P1 to P4 was col-

lapsed, it would know that the robot’s plan is already optimal in the human mental

model and hence be required to provide no further explanation. This form of expla-

nations can thus clearly be used to cut down on the size of conformant explanations

by reducing the size of the completion set.

Definition: A Conditional Explanation is represented by a policy that maps
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the annotated model (represented by a Mmin and Mmax model pair) to either a

question regarding the existence of a condition in the human ground model or a model

update request. The resultant annotated model is produced, by either applying the

model update directly into the current model or by updating the model to conform

to human’s answer regarding the existence of the condition.

In asking questions such as these, the robot is trying to exploit the human’s (lack

of) knowledge of the problem in order to provide more concise explanations. This can

be construed as a case of lying by omission and can raise interesting ethical consid-

erations (Chakraborti and Kambhampati, 2019b). Humans, during an explanation

process, tend to undergo this same “selection” process (Miller, 2017a) as well in deter-

mining which of the many reasons that could explain an event is worth highlighting.

Modified AO∗-search to find Conditional Explanations We can generate con-

ditional explanations by either performing post-processing on conformant explana-

tions or by performing an AND-OR graph search with AO∗(Nilsson, 1980). AO∗ is

a heuristic search procedure for acyclic AND-OR graph search, that is guaranteed to

identify the optimal solution, provided the heuristics are admissible and monotonic.

Here each model update related to a known condition forms an OR successor node

while each possible condition can be applied on the current state to produce a pair of

AND successors, where the first node reflects a node where the annotated condition

holds while the second one represents the state where it does not. So the number of

possible conditions reduces by one in each one of these AND successor nodes. This

AND successor relates to the answers the human could potentially provide when asked

about the existence of that particular possible condition. Note that this AND-OR

graph will not contain any cycles as we only provide model updates that are consistent

with the robot model and hence we can directly use the AO∗ search here.
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Throughout this section, we will use h=0 as our heuristic and unit cost for expla-

nations and queries. AO∗ search can be understood to be operating in two distinct

phases, in the first phase the algorithm considers the current best partial solution

and identifies a node to expand. This is a top-down operation and the next phase is

a bottom-up cost and label revision stage. Here both the label and the cost of the

newly expanded node are propagated back up the graph. The acyclicity of our setting

ensures that this backward propagation can be easily carried out. This is done by

adding any parents of an updated node into the set S and the procedure continues

until the set is empty. All goal nodes (i.e. explanations holds in all remaining models)

are marked with SUCCESS label. Each parent node receives the label of the succes-

sor node with the minimum value. In the case of an AND successor, the parent only

receives the SUCCESS label if all the possible children has the SUCCESS label. The

search ends when the root node is assigned the SUCCESS label.

Unfortunately, if we used the standard AO∗ search, it will not produce a condi-

tional explanation that contains this “less robust” explanation as one of the potential

branches in the conditional explanation. This is because, in the above example, if the

human had said that the path was free, the robot would need to revert to the original

conformant explanation. Thus the cost of the subtree containing this solution will be

higher than the one that only includes the original conformant explanation.

To overcome this shortcoming, we introduce a discounted version of the AO∗

search where the cost contributed by a pair of AND successors is calculated as –

min(node1.h val, node2.h val) + γ ∗max(node1.h val, node2.h val)

where node1 and node2 are the successor nodes and node1.h val, node2.h val are their

respective h-values. Here γ represents the discount fact and controls how much the

search values short paths in its solution subtree. When γ = 1, the search becomes
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standard AO∗ search and when γ = 0, the search myopically optimizes for short

branches (at the cost of the depth of the solution subtree). The rest of the algorithm

stays the same as the standard AO∗ search. Though with this modification, AO∗ is

no longer guarateed to generate optimal solutions when γ 6= 1. The pseudocode is

provided in Algorithm 4.

Anytime Explanations

As we will see later in the evaluations, both the algorithms discussed above can be

computationally expensive, in spite of the compilation trick to reduce the set of possi-

ble models to two representative models. However, as we did previously with MCEs,

we can also shoot for an approximate solution by relaxing the minimality requirement

of explanation to achieve much shorter explanation generation time when required.

For this we introduce an anytime depth first explanation generation algorithm. Here,

for each state, the successor states include all the nodes that can be generated by

applying the model edit actions on all the known predicates and two possible suc-

cessors for each possible condition – one where the condition holds and one where it

does not. Once the search reaches a goal state (a new model where the target plan is

optimal throughout its completion set), it queries the human to see if the assumptions

it has made regarding possible conditions hold in the human mental model (the list

of model updates made related to possible conditions). If all the assumptions hold in

the human model, then we return the current solution as the final explanation (or use

the answers to look for smaller explanations), else continue the search after pruning

the search space using the answers provided by the human. Such approaches may

also be able to facilitate iterative presentation of model reconciliation explanations

to the human. (Zakershahrak et al., 2019)

The pruning can be performed efficiently by keeping track of all the human an-
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Algorithm 4 MEGA∗-Conditional

1: procedure AO*-Search

2: Input : MRP 〈π∗, 〈MR,MR
h 〉〉, γ

3: Output : Explanation EMCE

4: Procedure:

5: c list ← {} . Closed list

6: π∗R ← π∗ . Optimal plan being explained

7: MH
min ←MIN MODEL(MH) . Generates Mmin as per definition

8: MH
max ←MAX MODEL(MH) . Generates Mmax as per definition

9: G← Node(〈MH
min,MH

max, {}〉)

10: while G.label != Success do

11: current node ← Unexpanded node(G) . Return an unexpanded node in the current best path

12: S ← {curent node}

13: curent node.successors ← GetSuccessors(current node)

14: while S not empty() do

15: node ← S.pop() . Refer to (Nilsson, 1980) to see how to prioritize which nodes to remove

16: min val ← 0

17: label ← None

18: for succ in node.successors do

19: if succ is a OR Succ then

20: node1 ← succ

21: if min val > node1.h val then

22: min val = node1.h val

23: label = node1.label

24: if succ is a AND Succ then

25: node1, node2 ← succ

26: tmp val = min(node1.h val, node2.h val) + γ * max(node1.h val, node2.h val)

27: if min val > tmp val then

28: min val = tmp val

29: if node1.label == node2.label then

30: label = node1.label

31: node.label = label

32: nodel.h val = 1 + min val

33: Add all parents of node to S
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Algorithm 5 Procedures used by MEGA∗-Conditional

1: procedure GetSuccessors(node, MR)

2: min state, max state ← node.state

3: Known predicates ← Γ(min state) ∩ Γ(max state)

4: Possible predicates ← Γ(min state)∆Γ(max state)

5: OR actions deletes ← {Known predicates \Γ(MR)}

6: OR actions adds{Γ(MR)\Known predicates}

7: AND actions ← Possible predicates

8: Succ nodes ← Set()

9: for a ∈ OR actions adds do

10: tmp node = Node(〈Γ−1(min state ∪ a),Γ−1(max state ∪ a)〉)

11: tmp node ← Evaluate Node(tmp node)

12: Succ nodes.push(OR succ(tmp node)))

13: for a ∈ OR actions deletes do

14: tmp node = Node(〈Γ−1(min state \ a),Γ−1(max state \ a)〉)

15: tmp node ← Evaluate Node(node)

16: Succ nodes.push(OR succ(tmp node))

17: for a ∈ AND actions do

18: tmp node1 = Node(〈Γ−1(min state ∪ a),Γ−1(max state ∪ a)〉)

19: tmp node2 = Node(〈Γ−1(min state \ a),Γ−1(max state \ a)〉)

20: tmp node1 ← Evaluate Node(tmp node1)

21: tmp node2 ← Evaluate Node(tmp node2)

22: Succ nodes.push(AND succ(tmp node1, tmp node2))
return Succ nodes

23: procedure Evaluate Node(node)

24: if Check For Goal(node) then . Refer to MEGA∗-Conformant for goal test

25: node.h val ← 0

26: node.label ← SUCCESS

27: else

28: node.h val ← heuristic(node)
return node
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swers and enforcing these specifications only at the time of expansion of new nodes.

Algorithm 6 presents a depth-first search approach for an anytime solution. Here

we add an additional variable A to the search node to keep track of the possible

assumptions that we have made for any given search path. The TEST ASSUMPTION

denotes the function responsible for testing the set of assumptions during the goal

test. TEST ASSUMPTION returns the set of assumptions that were invalidated by the

human Ainvalid and we can return the current search path as a solution if the invalid

set is empty. We will use the validated and invalidated assumption to update our

current search stack (via the UPDATE STACK function).

6.2.1 Supporting Multiple Humans in the Loop

While generating explanations for a set of models, the robot is essentially trying

to cater to multiple human models at the same time. We posit then that the same

approaches can be adopted to situations when there are multiple humans in the loop

instead of a single human whose model is not known with certainty. As before,

computing separate explanations for each agent can result in situations where the

explanations computed for individual models independently are not consistent across

all the possible target domains. In the case of multiple teammates being explained

to, this may cause confusion and loss of trust, especially in teaming with humans who

are known (Cooke et al., 2013) to rely on shared mental models. Thus conformant

explanations can be useful in dealing with not only model uncertainty but also model

multiplicity.

In order to do this, from the set of target human mental models we construct an

annotated model so that the preconditions and effects that appear in all target models

become necessary ones, and those that appear in just a subset are possible ones. As

before, we find a single explanation that is a satisfactory explanation for the entire
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Algorithm 6 MEGA∗-Anytime

1: procedure Anytime-explanation

2: Input : MRP 〈π∗, 〈MR,MR
h 〉〉

3: Output : Explanation E

4: Procedure:

5: fringe ← Stack()

6: π∗R ← π∗ . Optimal plan being explained

7: Mmax, Mmin ←(MR
h ) . Proposition 8

8: A ← {} . Current assumptions

9: fringe.push(〈Mmin,Mmax,A, {}〉)

10: while True do

11: 〈M̂min,M̂max,A, E〉 ← fringe.pop()

12: if CM̂max (π∗R)=C∗
M̂max

∧ δM̂min
(IM̂min

, π∗R) |= GM̂min
then

13: Avalid,Ainvalid ← TEST ASSUMPTION(A)

14: Avalid ← A \Ainvalid

15: if |Ainvalid| = 0 then

16: return E . Proposition 7

17: else

18: UPDATE STACK(fringe, Avalid,Ainvalid)

19: else

20: for f ∈ {Γ(M̂min) ∪ Γ(M̂max)} \ Γ(MR) do

21: λ← 〈1, 〈M̂min,M̂max〉, {}, {f}〉 . Removes f from M̂

22: if f 6∈ {Γ(M̂min) ∩ Γ(M̂max)} \ Γ(MR) then

23: A ← A∪ f . Add to assumptions if possible condition

24: fringe.push(〈δMR
h
,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),

E ∪ λ〉,A)

25: for f ∈ Γ(MR) \ {Γ(M̂min) ∪ Γ(M̂max)} do

26: λ← 〈1, {〈M̂min,M̂max〉, {f}, {}〉 . Adds f to M̂

27: fringe.push(〈δMR
h
,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),

E ∪ λ〉, A)
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set of models, without having to repeat the standard MRP process over all possible

models while coming up with an explanation that can satisfy all of them and thus

establish common ground.

While the explanation generation technique may be equivalent, the explanation

process may be different depending on the setup. For example, while in the case of

model uncertainty, the safest approach might be to generate explanations that work

for the largest set of possible models, in scenarios with multiple explainees, the robot

may have to decide whether it needs to save computational and communication time

by generating one explanation to fit all models, or if it needs to tailor the explanation

to each human. This choice may depend on the particular domain and the nature of

the teaming relationship with the human.

In order to understand this better with the use of an example, we go back to

our USAR domain, now with two human teammates, one external and one internal.

The robot is now positioned at P1 and is expected to collect data from location P5.

Before the robot can perform its surveil action, it needs to obtain a set of tools

from the internal human agent. The human agent is initially located at P10 and is

capable of traveling to reachable locations to meet the robot for the handover. Here

the external commander incorrectly believes that the path from P1 to P9 is clear,

while the one from P2 to P3 is closed. The internal human agent, on the other hand,

not only believes in the errors mentioned above but is also under the assumption that

the path from P4 to P5 is not traversable. Due to these different initial states, each of

these agents ends up generating a different optimal plan. The plan expected by the

external commander requires the robot to move to location P10 (via P9) to meet the

human. After collecting the package from the internal agent, the commander expects

it to set off to P5 via P4. The internal agent, on the other hand, believes that he

needs to travel to P9 to hand over the package. As he believes that the corridor from
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P4 to P5 is blocked, he expects the robot to take the longer route to P5 through P6,

P7, and P8 (orange). Finally, the optimal plan for the robot (blue) involves the robot

meeting the human at P4 on its way to P5. MEGA∗-Conformant finds the smallest

explanation which explains this plan to both humans.

In this particular case, since the models differ from each other with respect to

their initial states, the initial state of the corresponding annotated model is –

I0 = {(at P1), (at human P10), ..., (clear path P10 P9), (clear path P9 P1)}

I+ = {(clear path P4 P5), (collapsed path P4 P5)}

where I+ represents the state fluents that may or may not hold in human’s model.

The corresponding initial states for Mmin and Mmax will be as follows –

Imin = {(at P1), (at human P10), ..., (clear path P10 P9), (clear path P9 P1)}

Imax = Imin ∪ {(clear pathP4P5), (collapsed pathP4P5)}

MEGA∗-Conformant thus generates the following explanation –

Explanation >> add-INIT-has-clear_path P4 P5

Explanation >> remove-INIT-has-clear_path P1 P9

Explanation >> add-INIT-has-clear_path P2 P3

The first update specifically helps the internal to understand that the robot can

indeed reach the goal through P4, while the next two are relevant for both the ex-

plainees to explain why they should meet at P4 rather instead.

6.3 Empirical Evaluations

We performed a set of empirical evaluation to evaluate the computational charac-

teristics of the explanation generation for some benchmark problems, including the

time taken for generating the explanations and the size of generated explanations. Our
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explanation generation system integrates calls to Fast-Downward (Helmert, 2006) for

planning, VAL (Howey et al., 2004) for plan validation, and pyperplan (Alkhazraji

et al., 2016) for parsing. The results reported here are from experiments run on a

12 core Intel(R) Xeon(R) CPU with an E5-2643 v3@t3.40GHz processor and a 64G

RAM. We use three popular planning domains (International Planning Competition,

2011) – BlocksWorld, Logistics and Rover – for our experiments. In order to generate

explanations we created the human model by randomly removing parts (precondi-

tions and effects) of the action model (the number of edits made per domain is equal

to the model patch explanations, which is reported in Table 4.2). Though the follow-

ing experiments are only pertinent to action model differences, it does not make any

difference at all to the approaches, given the way the state was defined. Also note

that these removals, as well as the corresponding model space search, were done in

the lifted representation of the domain.

In the experiments, we will look at the empirical properties of generating confor-

mant, conditional, and anytime explanations.

6.3.1 Conformant, Conditional, and Anytime Explanations

To evaluate explanations against a set of mental models, for each domain, we

chose ten problems (generated from the IPC problem generators), and created a new

domain and problem pair by removing five random predicates. This new domain and

problem represent the ground truth human model. Next, we generate the uncertain

estimate of this model by moving three random predicates into the annotated list.

By doing this, we ensure that the ground truth model remains in the completion list

of this incomplete model. For these tests, we assume all the possible conditions are

equally likely.

As before, Table 6.1 documents the runtime and the size of explanations generated
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by each of the algorithms. Note that the MEGA∗-Conditional was run with γ set to 0.4

and the results for the anytime algorithm only presents the time and size of the first

solution found. Also, both MEGA∗-Conditional and MEGA∗-Anytime expect that it

can query the human about the ground truth (each question that the algorithm comes

up with is tested against that ground model). The “Question Size” column reports the

number of questions that were produced by the search, where each question is related

to a single annotated condition, while the “Explanation Size” is the size of the actual

explanation presented to the human. For MEGA∗-Conditional and MEGA∗-Anytime,

we also report the sum of ‘Question Size” and “Explanation Size” in parantheses in

the explanation column reflecting the total interaction overhead on the human’s end.

Unlike MEGA∗-Conditional and MEGA∗-Anytime, MEGA∗-Conformant generates no

questions but may produce superfluous explanations. Thus, in the “Explanation

Size” column for MEGA∗-Conformant, we present both the size of the non-superfluous

component of the explanation (model updates involving only the known conditions)

and the total size of the explanation generated (within parenthesis). The results

closely follow intuition. MEGA∗-Anytime generally takes less time. However, since

the MEGA∗-Anytime algorithm uses a depth first search we cannot guarantee the

quality of the solution. In fact, for more than ten problems the solution generated

by MEGA∗-Anytime is strictly worse (in terms Question size + Explanation size)

than MEGA∗-Conditional and for the majority of problems the Question size +

Explanation size produced by MEGA∗-Anytime is strictly larger than the total size of

explanations generated by MEGA∗-Conformant.

Depending on the order in which the successors are visited MEGA∗-Anytime can

end up with smaller sequences. While MEGA∗-Conformant tend to terminate faster

than MEGA∗-Conditional, the latter produces shorter explanations whenever possible.

Finally, the purpose of compiling the set of possible models intoMmax andMmin
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Problem Instance

Conformant explanations Conditional Explanations Anytime Explanations

Explanation Time Question Explanation Time Question Explanation Time

Size (secs) Size Size (secs) Size Size (secs)

Blocksworld

p1 3 (6) 134.84 3 5 (8) 140.75 3 2 (5) 23.7

p2 1 (1) 1.64 0 1 (1) 9.2 0 2 (2) 7.32

p3 2 (3) 20.56 1 3 (4) 55.91 3 3 (6) 20.51

p4 1 (2) 11.23 1 2 (3) 128.5 0 9 (9) 21.51

p5 3 (6) 130.64 3 5 (8) 150.61 3 3 (6) 29.43

p6 2 (4) 279.71 2 4 (6) 539.2 3 2 (5) 25.78

p7 2 (5) 343.04 3 1 (4) 495.2 3 3 (6) 26.79

p8 3 (3) 60.35 0 3 (3) 204.72 0 3 (3) 9.7

p9 2 (4) 234.7 2 4 (6) 379.21 2 2 (4) 18.57

p10 1 (3) 218.38 3 2 (5) 444.61 2 2 (4) 19.92

Logistics

p1 2 (4) 62.3 2 4 (6) 99.78 2 2 (4) 21.96

p2 2 (5) 61.45 3 5 (8) 80.73 3 3 (6) 26.68

p3 3 (5) 246.23 2 4 (6) 297.71 2 2 (4) 21.6

p4 2 (5) 54.79 3 5 (8) 72.69 3 3 (6) 21.63

p5 2 (5) 59.87 3 5 (8) 86.72 3 3 (6) 26.04

p6 2 (4) 489.36 2 3 (5) 729.42 3 2 (5) 24.54

p7 2 (5) 402.66 1 2 (3) 544.23 3 3 (6) 28.98

p8 3 (5) 522.47 2 4 (6) 731.1 3 3 (6) 17.78

p9 3 (6) 1719.26 3 4 (7) 1535.02 3 1 (4) 22.48

p10 4 (6) 1747.62 2 5 (7) 1783.33 2 4 (6) 21.2

Rover

p1 2 (2) 3.83 0 1 (1) 8.63 0 3 (3) 9.37

p2 2 (3) 26.93 1 2 (3) 141.2 2 3 (5) 12.91

p3 2 (4) 99.02 2 3 (5) 165.82 3 2 (5) 25.62

p4 3 (4) 102.57 1 3 (4) 253.41 1 4 (5) 13.57

p5 1 (2) 14.87 0 1 (1) 10.58 3 2 (5) 25.65

p6 1 (2) 146.21 1 1 (2) 835.16 1 4 (5) 14.15

p7 2 (3) 182.81 1 2 (3) 599.48 1 3 (4) 15.31

p8 1 (1) 12.07 0 1 (1) 32.92 0 1 (1) 5.14

p9 1 (2) 125.49 1 2 (3) 523.48 1 1 (2) 15.74

p10 1 (2) 89.89 1 2 (3) 525.24 2 1 (3) 19.57

Table 6.1: Runtime and Solution Size for Explanations with Uncertain Mental Models.

is that we no longer need to compute explanations over each individual model in

the set of possible models separately (baseline). Table 6.2 illustrates the significant

scale-ups we can achieve as a result of this.
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# of models → 2 4 8 16

Baseline 10.95 41.71 195.81 936.30

MEGA∗-Conformant 11.11 37.01 117.26 291.88

Table 6.2: Comparison of the Runtime for MEGA∗-Conformant Versus the Time

Needed to Run MCE for Every Member of the Completion Set.

6.4 Concluding Remarks

This chapter looked at methods that allow one to generate model-reconciliation

explanations in the absence of the exact human model. We also looked at how one

could also use methods designed to generate explanations in the presence of model

uncertainty to generate explanations for multiple users. Such methods are particu-

larly well suited for scenarios where one would want to help build a common ground

between the various users receiving the explanations. In fact, the conformant explana-

tion generation method was used by the decision-support system called MA-RADAR

(Sengupta et al., 2018), for exactly this purpose. That system also makes sure that

the explanations provided to the user will respect any privacy requirements the var-

ious users may have. In the next chapter, we will further relax the requirement for

the human mental model and consider cases where even an incomplete version of the

human mental model may not be available.
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Chapter 7

MODEL-FREE MODEL RECONCILIATION

In the previous chapter, we relaxed the requirement that one would need the exact

human mental model, however the method still expects access to an incomplete model

representation. Additionally, the degree of effectiveness of the method would be

directly dependent on the degree of completeness of the model. In this chapter, we will

look at an alternate way to generate model-reconciliation explanations.Specifically, we

will investigate the use of learned models that can predict how human expectations

could be affected by possible explanations (derived completely from information about

the agent model) and in fact show how this method could be viewed as a variation of

previous approaches that have been put forth to identify explicable behavior.

We will start by extending model reconciliation to the more general setting of

planning with Markov Decision Processes (Section 7.2). The rest of the chapter will

investigate how these ideas could be used when the human mental model of the task

is unavailable, and will formulate a learning problem that allows us to learn simple

models that could be used to identify minimal explanations (Section 7.3). Finally, we

will evaluate our method on a set of standard MDP benchmarks and perform user

studies to validate its viability (Section 7.4).

7.1 Illustrative Example

Consider a warehouse scenario, where a robot is tasked with moving packages from

racks and dropping them off at the dispatch chute. The robot is powered by a battery

pack that can be recharged by visiting its docking station. The docking station also

doubles as a quality assurance station that the robot needs to visit whenever it picks
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up a box labeled #013 (which means the box is fragile). The robot’s operations are

mostly deterministic, apart from a small probability of slipping (0.25) in some cells,

that could leave the robot in the same position.

Now suppose the warehouse has just hired a new part-time employee to oversee

the operations. The employee is just getting used to this new setting and is puzzled

by the robot’s decision to once in a while take a detour from the drop-off activity and

visit a specific position of the factory floor (which is, in fact, the docking location).

If we wished the robot to be explainable, then it would need to be capable of helping

the employee better understand the underlying model used by the robot (i.e achieve

some form of model reconciliation). Given the fact that the robot may not have an

exact model of the user, one way to achieve this could be by providing robot’s entire

model to the user. Unfortunately, this could easily overwhelm the user.

Another possibility could be to allow the user to specify which robot actions

appear inexplicable, and focus on providing facts relevant to those actions. This

explanation may still prove to be quite verbose and may in fact not help resolve

their confusion. For example, imagine a case where the robot is visiting the station

to recharge its batteries and the human says that the visit action is inexplicable.

Now even if the robot mentions that visiting the station recharges it, the employee

may still be confused if they are under the incorrect assumption that the robot is

operating on full battery. Similarly, if the human had expected the robot to go to the

docking station due to some confusion regarding the box codes, the human may mark

the robot decision to not go to the dropoff as being inexplicable and the explanations

that could resolve the confusion may have little to do with that specific action marked

as inexplicable.
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Figure 7.1: Subfigure (a) Shows a Visualization of a Trajectory Expected by the User

Described in the Illustrative Example, and (b) Shows the Visualization of a Trajectory

the User May Observe. Subfigure (c), Shows the Various Explanatory Messages That

Could Be Used in This Scenario, Note That the Messages Span Information from

Multiple Abstractions of the given Task

7.2 Explanation as Model Reconciliation for MDPs

In this setting the human and robot models are captured as MDPs defined over

the same set of states. In particular, we will look at representing each MDP M by

a tuple of the form 〈S,A, T,R, γ, µ〉, where the S provides the set of possible atomic

states, A defines the set of actions, T is the transition function, R the reward, γ

the discounting factor (where 0 ≤ γ < 1) and µ corresponds to the distribution of

possible initial states.

For model paramterization, we will characterize each model by the tuple θ =

〈θT , θR, θγ, θµ〉, where the θT provides the set of parameters that defines the transition

probabilities P (.|s, a), while θR the parameters corresponding to the reward function,

θγ the parameters corresponding to the discount factor and θµ the parameters for the
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initial state distribution. For simple MDP models with atomic states, θT contains

parameters of the categorical distribution for each transition (θµ will contain similar

parameters for the initial state distribution), θR contains the reward associated with

each transition (an 〈s, a, s′〉 tuple) and θγ just contains the value of the discount

factor. The specific instantiations of the parameters for each model M is captured

as θ(M). For simplicity, we will denote each of the unique parameters in the tuple

θ using indexes. For example, θs,aT (MR), will correspond to the parameters for the

distribution P (.|s, a) for the model MR.

If we use M to capture the set of all possible models and Θ = θT × θR × θγ × θµ,

then model reconciliation operation can be captured as a function E〈MR
h ,MR〉 : 2Θ →M

that takes in a set of model parameters and generates a new version of the modelMR
h

where the set of specified parameters will be set to values from MR. For example,

M̂ = E〈MR
h ,MR〉(θ

s1,a
T ) will be a new model such that θ(M̂) will be identical to θ(MR

h ),

except that θs1,aTM̂
, will be equal to θs1,a

TR
.

Practically, the model reconciliation operation corresponds to the robot informing

the human about some part of its model. This communication could incur cost and

we can capture this by using the cost function C : 2Θ → R that maps a given set of a

threshold to a cost.

Now the question we need to ask is whether the agent is trying to explain its

policy or if it is trying to explain some behavior (i.e an execution trace). Most of the

earlier work that looks at model reconciliation explanation (cf. (Chakraborti et al.,

2017; Sreedharan et al., 2018a,c)) has looked at sequential plans and has generally

ignored this differentiation and treated the problem of explaining plans to be same as

that of explaining behavior. In general, a given plan or policy compactly represents

a set of possible behaviors and the choice of explaining behavior vs explaining the

plans/policies could affect the content of the explanation being given. For example,
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when explaining policies there is the additional challenge of presenting the entire

policy to the user and the explainer may need to justify action choices for extremely

unlikely states or contingencies. On the other hand, when explaining a given set of

behaviors the explainer needs to only justify their action choices for cases they actually

witnessed. For example, when explaining traces from the warehouse scenario, given

the small probability of slipping, the robot may never have to mention what to do

when it slips, but on the other hand if we are dealing with full policies, the agent may

need to talk about the states where the robot is in the slipped positions and they

need to get up from that position and move on.

Explaining policies or plans becomes more relevant when we consider explanatory

dialogues where the agent and the user are trying to jointly come to agreement on

what policy/plans to follow (eg: decision support systems), while the latter may be

more useful when the user is observing some agent operating in an environment.

With respect to policies, we assume that the user is presented with the entire

policy. A given policy is said to be explicable to the human, if the policy is optimal

for the human model. Therefore the goal of the explainer becomes that of ensuring

the optimality of the given policy

Definition 12. A set of parameters θE corresponds to a complete policy expla-

nation for the given robot policy π∗MR , if the policy is also optimal for E〈MR
h ,MR〉(θE)

and is said to be the minimally complete policy explanation if there exists no other

complete explanation θE ′ , such that, C(θE ′) < C(θE)

Finding a complete policy explanation is relatively straightforward (the set of

all parameters automatically meets this requirement). The more challenging case

becomes that of finding the minimal or the cheapest explanations i.e. the minimally

complete explanations. Such minimally complete explanations can be calculated by
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adopting a search strategy similar to the one presented by Chakraborti et al. (2017).

The search can start at the human model and try to find the minimal number of

parameters that needs to be updated in the human model for the current policy to

become optimal. Similar to generating minimally complete explanations, i.e, we can

also generate monotonic explanations (i.e explanations where no further information

about parameters in the robot model can affect the optimality of the current plan).

In the case of policies, we can also describe explicable planning and balancing cost

of explanations with that of choosing policies that are inherently explicable, where

inexplicablity score (IE) of a policy π is defined as

IE(π,MR
h ) = |E[V

MR
h

π∗ (s)|s ∼ µRh ]− E[V
MR

h
π (s)|s ∼ µRh ]|

Where π∗ is the optimal policy in the human model. Explicable planning thus be-

comes the problem of choosing policies that minimize inexplicability score (Kulkarni

et al., 2019a), while minimizing the potential loss in optimality due to the policy

choice (since the most explicable plan may not be an optimal policy). Balanced plan-

ning, as studied by Chakraborti et al. (2019f), proposes going one step further and

also takes into account possible savings in inexplicability score that can be achieved by

providing explanation (while incurring additional cost of communicating the required

explanations).

For explaining behavior, we will look at the simplest case, namely the agent needs

to explain a set of behaviors that the user has just observed. We will assume that

the observer has full observability of the state and is seeing the robot behavior for

the first time. In such a setting, a given trace τ would appear explicable to the user

if it could be sampled from their expected MDP policy (i.e a policy optimal in their

model) or more generally, i.e PMR
h

(τ |π) > δ, where δ is some small threshold. 1

1We use δ in the general case to allow for the possibility that people can be surprised by unlikely
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Definition 13. A set of parameters θE corresponds to a complete behavior expla-

nation for a set of traces T = {τ1, ...τn}, if ∀τ ∈ T, ∃π such that PE〈MR
h
,MR〉(θE)(τ |π) >

δ and π is an optimal policy for the model PE〈MR
h
,MR〉(θE). The explanation is said

to be the minimally complete behavior explanation if there exists no other complete

explanation θE ′ , such that, C(θE ′) < C(θE)

Note that given the above definition, if δ is set very high it may not be possible

to find a complete explanation, as the trace may genuinely contain low probability

transitions. In this work we will assume δ to be zero.

While model reconciliation could be an important component of either policy

or behavior explanation, the applicability of the model reconciliation explanations

on their own for policies is limited by the fact that in all but problems with the

smallest state spaces, the user would have trouble going over the entire policy. Thus

in these settings, explanatory systems would need to also utilize policy approximation

or summarization methods, then allow users the ability to drill down on policy details

as required. Since our main goals was to focus on developing approaches that allow us

to generate model reconciliation explanations without explicitly defined user models,

the rest of the chapter will mostly focus on behavior explanation. In Section 7.5, we

will have a brief discussion on how these methods could potentially be extended to

policy explanation scenarios.

7.3 Explaining Without Explicit Human Mental Models

Now we will look at how we can identify cheap complete behavior explanations

when the human model is unknown. We will go one step further from identifying

not only the parameters that need to be explained, but also capturing the right

modality/abstractions to present the information about the parameters. That is, we

events of non-zero probability
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will no longer assume that the human is using a full MDP model to come up with

their decisions. Instead, the robot starts with a set of explanatory messages Ψ =

{m1,m2, ...,mn} that can be presented to the user. Where the messages correspond

to a set of parameter values (the parameters corresponding to a set of messages

{m1, ..mk} is denoted as E({m1, ..mk})) of the model as captured in some abstraction

of this model and has a corresponding cost ( C) associated with it. The abstractions

to consider may depend on the specific scenario and the previous information about

the intended users (laypeople vs. experts). Some simple possibilities may be to

consider qualitative models (say non-deterministic ones instead of stochastic) and

considering state abstractions the given task. Note that, technically E(Ψ), need not

span the set of all possible model parameters, but could rather be limited to a subset

of parameters identified to be relevant to the given problem. One possible way may

be to consider variations of explanation techniques like MSE (Khan et al., 2009) to

identify set of possible factors that affect the optimality of each action. In Figure

7.1, the subfigure (c) shows a set of possible explanatory messages for the warehouse

domain, that consists of each parameter mapped to some english statement. For

models captured using factored representations that use relational or propositional

fluents, such statements could be easily generated using templates (cf. (Hayes and

Shah, 2017)).

Given this setting, we will now make some simplifying assumptions, namely, (1)

the order in which the explanatory messages are presented does not matter (2) we

have access to a set of observers with similar models and they share this model

with the target user (3) the robot is viewing the task at the same level or at a more

detailed level of granularity than the user and (4) the user and robot have some shared

vocabulary in regards to the task. While assumption (1) is easily met since we are

mostly dealing with model information and (4) is a prerequisite for most explanatory
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approaches, in section 7.5 we will discuss how we can possibly relax requirements (2)

and (3).

Now our goal is to learn a predictive model that is able to predict whether a

given user would find a given 〈s, a, s〉 tuple explicable and how the user’s perception

changes with the given explanatory messages.

For example, at the beginning of an episode the user may be presented with the

following explanatory messages

Ψ̂ = {m1 = “Robot slips with probability 0.25 at grey cells”},

which corresponds to the fact that P (si|a, si) = 0.25, for all states si where the feature

grey cell is true and for all actions a. Now the user will be presented with a sequence

of transitions, say 〈(1, 2), right, (2, 2)〉 and asked whether the transition was explicable

or not. Then the tuple 〈〈(1, 2), right, (2, 2)〉, {m1}, l1〉, where l1 is the label assigned

by the user to the transition, becomes input to our learning method.

The exact function that we would want to learn would be

L(〈s, a, s′〉, {m1, ...,mk}) =



1 if 〈s, a, s′〉 ∼

π∗E〈MR
h
,MR〉(θ({m1,...,mk})(s)

0 otherwise

Note that this is a modified version of the sequential model we introduced by Zhang

et al. (2017) for identifying whether a given plan is explicable or not. Though our

methods vary in some significant aspects, namely, (1) we allow for the possibility that

the explicability of the actions/traces could be affected by explanations provided

by the system; (2) we no longer use labels of high level tasks as a proxy for the

explicability of the trace. Instead, we just use a simple binary label on whether the

transition is explicable or not; (3) we no longer consider sequence models but rather

a much simpler labeling model that maps a single transition to the explicability label.
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We argue that in cases where the human is markovian on the same set of features as

the agent, this rather simpler model suffices.

It is also important that our learning approach is more tractable than the ones

studied by Zhang et al. (2017), since in their case to build a balanced dataset (of

explicable and inexplicable plans), they would need to uniformly sample through the

entire plan space (an extremely hard endeavour with no obvious known approaches),

while we stick to traces generated from the optimal policy and only need to randomly

generate possible sets of explanatory messages, which is clearly a smaller set.

Once we have learned an approximation of the above labeling function L̂, the

problem of explanation generation for a trace τ = 〈s0, a0, s1, ..., sn, an, sn+1〉 becomes

that of finding the subset of Ψ that balances the cost of communication with the

reduction in the inexplicability of the given trace, i.e

arg min
Ψ̂

(CM(Ψ̂) + α ∗ Σn
i=0(1− L̂(〈si, ai, si+1〉, Ψ̂)))

Where Ψ̂ is a subset of Ψ and α is some scaling factor that balances the cost of

explanation with the number of inexplicable transitions for a given trace.

7.4 Evaluation

The success of the approach described above would be directly dependent on

whether we can learn high accuracy labeling models. Once we have access to such

a model, we could be quite confident in our ability to generate useful explanation

(provided the user’s model is the same as the one the labeler was trained on) and

identifying the best explanation becomes a matter of just searching for the required

subset of messages that minimizes the objective defined in section 7.3. So to evaluate

the method our focus was on identifying if it was possible to learn high accuracy

models. We validated our approach on both simulations and on data collected from
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users.

7.4.1 Evaluation on Simulated Data

For simulations, we used a slightly modified versions of the Taxi domain (Diet-

terich, 1998) (of size 6*6), the Four rooms domain (Sutton et al., 1999) (of size 9*9)

and the warehouse scenario (of size 9*9) described before (implemented using the

SimpleRL framework (Abel, 2019)). For each domain, we start with an MDP in-

stance (henceforth referred to as the robot model) and then create a space of possible

user models by identifying a set of possible values for each MDP parameter. For

example, in the taxi domain the parameters include position of the passengers, their

destination, the step cost, discounting etc., for the Four rooms this included the goal

locations, locations with negative rewards, discounting, step cost, slip probability,

etc., and finally for the warehouse, the position of the box, the position of station

#1, the step cost, slipping probabilities and the discounting factors were selected

as potential parameters that can be updated. In this setting, we assume that there

exists a single explanatory message for each possible parameter.

For each individual test, we select a random subset of three parameters and then

randomly choose a value for each of these. We then treat this new MDP model as

a stand-in for the user model and use it to label traces generated from the original

MDP. The traces were generated by choosing a random initial state and then following

the optimal policy of the robot until either the terminal state is reached or the trace

length reaches a predefined limit. For each trace, a random subset of the explanations

was selected and presented to the human. This means updating the MDP parameters

to their corresponding values in the robot model only for the parameters specified by

the current subset of explanation. Each individual transition was then labeled using

this updated MDP. A transition was labeled as inexplicable if the action is not the
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Figure 7.2: The Test Accuracy for Increasing Sizes of Training Set.

optimal one in the human model (i.e. Q value is lower) or the next state had a

probability of occurring of δ = 0.

We then used this set of labeled transitions to create a training set and test set for

a decision tree learner. The input features to the decision tree consist of current state

features, (just x and y for Four rooms and the position of the the taxi and passengers

for the Taxi domain and for Warehouse it included the position of the robot and the

fact whether the agent picked up the box or visited station #1), the index of the

action and features capturing the current subset of explanations being considered. In

each Warehouse and Four rooms test instance, we collected 900 unique data points

as training set and 100 data points as the test set. Due to the complexity of the taxi

domain, we generated less data points (since for each different explanation subset we

need to solve a new planning problem) and used close to 220 unique points as training

data and on average 28 data points as the test set.

We then tested on 20 such instances for each domain. Figure 7.2 plots the aver-

age test accuracy for models trained with training sets of varying sizes. As evident
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from the graph, a simple decision tree seems to be able to easily model the effect of

explanations on labeling for these simulated scenarios. We chose a simple learning

model to establish the viability of this method, but one could easily see that the use

of more sophisticated learning methods and/or more informed features should lead

to better results.

7.4.2 User Studies

Next, we wanted to establish if we can still learn such simple models when the

labels are collected from naive users. Our goal here is not to consider scenarios with

possible differences in the user’s knowledge, but rather cases where, even in the pres-

ence of a set of users with similar backgrounds, their responses to explanations would

be too varied to learn useful models. To test this, we used the Warehouse domain as

a test bed and collected feedback on how users would view the explicability of traces

generated from this domain when presented with explanatory messages detailed in

Figure 7.1.

For the study, we recruited 45 master turkers from the Amazon Mechanical Turk.

Each participant was provided with the URL to a website (https://goo.gl/Hun3ce)

where they could view and label various robot behaviors. We considered a setting

where the robot had a full battery, but was picking up a fragile box and thus still

needs to visit the station #1. The robot could slip on some cells marked in dark

grey with probability 0.25 (slipping here meant the robot picture is tilted to give an

impression that it slipped on the cell and didn’t prevent the robot from moving to the

next cell). To make sure that all the users had similar mental models at the start, they

were provided with the following facts, (a) that robot couldn’t pass through racks,

(b) whenever the robot runs low on battery it needs to get to Station 1, (c) whenever

the robot has a green battery sign next to the robot, that means their battery is
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full and (d) the robot needs to take the shortest route to the goal. Also, they were

presented with an example trace in this instructions section and were made to take a

small pre-test that allowed them to revise the above facts in various scenarios. After

the pre-test, they were shown eight traces from the robot policy sampled according

to their probabilities. After the first trace, the user was given an explanation message

before each trace, where the message was taken from the seven possible messages (the

order of the messages was always randomized).

From the data collected from 45 turkers, we removed data from seven users, based

on the fact they didn’t find any of the transition in the first trace (i.e the case where

no explanation was provided) inexplicable. We imagine this number would go down

when we move to expert users or users who are invested in the success of the robot.

The data generated for the remaining 38 users were then used to train a decision tree.

Since the placement of other objects in the environment were fixed, we were able to

use rather simple features for the model like the current position of the robot (x

and y), previous position (again x and y), the action, whether they have slipped and

finally the explanations given. We found the model to have an average 10-fold cross

validation score of 0.935. For a randomly generated train and test split (where the

test split was 10% and contained around 7% inexpicable labels) the precision score

was 0.9637 and the recall score was 0.9568.

Furthermore, we could see that the model was able to correctly predict the useful-

ness of intuitive minimal explanations for the given scenario. For example, it predicted

that while the robots decision to visit station #1 would be considered inexeplicable

by the user in the absence of any explanation, the user would mark it as explicable

when they are explained about the box being fragile and that fragile boxes need to

be inspected at station #1. In fact the model predicted that only the message that

“fragile boxes need to be inspected at station #1” is enough to convince the user
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about the need for that action (i.e the user could deduce that the box must have

been fragile). This shows that such learned models may help us generate cheaper ex-

planations (the above set of explanations is smaller than the corresponding minimal

complete behavior explanation for the domain), by taking into account the users abil-

ity to correctly predict missing information in simple cases. Another point of interest

was that the model predicted all slipping events as explainable even in the absence

of any explanations. The cases where the user saw a slip before being told about the

possibility of slipping was rare (since there are two explanatory messages related to

slipping and the probability of slipping was 0.25). Furthermore when we went over

the data, we found that in most such cases, the users did mark it as explainable.

This may be because the effect of slipping may not have been that detrimental to the

overall plan (it doesn’t take you off the current path). It would be interesting to see

if this result would be the same in cases where slipping was a more likely event and

if it had a more apparent effect on the robot’s plan.

7.5 Related Work

To the best of our knowledge, this work represents the first attempt at learning

proxies for user mental models that allows an agent to predict the potential impact

of providing explanations as model reconciliation to observers. With that said, there

have been works that have looked at the problem of generating explanations in the

presence of model uncertainty for human models. In Chapter 6, we looked at cases

where the agent has access to a set of potential human models. One drawback of

considering a set of possible models is either they would need to have explicit sensing

to identify the user model (which could mean asking a large number of questions to

the user) or providing a large amount of information to cover the space of all possible

models. In our work, the problem of identifying the specifics of the user model is
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resolved through an offline training process.

Another method quite related to the discussion covered in this chapter is Reddy

et al. (2018), wherein the authors tried to identify cases where they can learn a

potential model for the human’s expectation of the task transition dynamics when

they do not align with the real world dynamics. Unlike their work, we do not assume

that the user can provide traces for the given task, rather they may be able to provide

some high-level feedback on the action (i.e. they may not be able to do or even know

the right action but may be able to point out actions or transitions that surprise

them). Moreover, their work requires that the user and the robot must have the

same reward function, which is again an assumption we do not make. Even if we had

followed their technique to learn a potential approximation of the human’s transition

model for the task, there is no guarantee that the learned representation would be

one that makes sense to the human.

This chapter proposes a possible way in which model reconciliation explanation

could be applied to cases where the user model is unknown. The method described

here is a rather simple and general method to identify information that could poten-

tially affect the user’s mental model and produce effects that align with the agent’s

requirements. There is no requirement here that the messages have to align with

actual facts about the world. This again points to the rather troubling similarities

between the mechanisms needed to generate useful explanations and lies (Chakraborti

and Kambhampati, 2019b).

Two important assumptions we made throughout the work is that the user only

considers the current state (as defined by the robot) to make their decisions and we

have access to a model that was learned from interactions to previous users who had

similar knowledge level to the current user. Relaxing the first assumption would re-

quire us to go beyond learning models that map each transitions to labels. Instead we
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have to consider sequential labeling models (for example models based on LSTM or

CRF) of the type considered by Zhang et al. (2017) to capture the human’s expecta-

tions. For example, we considered a simple extension of the warehouse domain where

the human believes the robot should visit two locations (i.e the human state contains

variables that record whether the user has visited the locations). Even though here

the user is considering a more detailed model, we were able to learn labeling models

of 80% accuracy by using simple CRFs. As for the second, instead of assuming that

all users are of the same type, a more reasonable assumption may be that the users

could be clustered into N groups and we could learn a different labeling model for

each user type. Now we still have a challenge of identifying the user type of a new user

and one way to overcome this would be by adopting a decision-theoretic approach to

this problem and modeling it as a POMDP (where user labels become observations

and previously learned user models the observation models).

The work discussed in this chapter only covers explanations that allow the user

and the system to reconcile any model difference. This only covers a part of the entire

explanatory dialogue. Even if there is no difference in models, the user may still have

questions about parts of the policy or may raise alternative policies they think should

be followed. This may arise from a difference in inferential abilities and may require

providing information that is already part of their deductive closure eg: help them

understand the long term consequences of taking some actions. Once you have access

to a set of such messages one could use a method similar to the one described in the

chapter to find the set of helpful ones. Unlike the model reconciliation setting where

the messages stand for information about the model, it is not quite clear how one

could automatically generate such messages.
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7.6 Concluding Remarks

This chapter proposes a possible way in which model reconciliation explanation

could be applied to cases where the user model is unknown. The method described

here is a rather simple and general method to identify information that could poten-

tially affect the user’s mental model and produce effects that align with the agent’s

requirements. There is no requirement here that the messages have to align with

actual facts about the world. This again points to the rather troubling similarities

between the mechanisms needed to generate useful explanations and lies (Chakraborti

and Kambhampati, 2019a).

Two important assumptions we made throughout the work is that the user only

considers the current state (as defined by the robot) to make their decisions and we

have access to a model that was learned from interactions to previous users who had

similar knowledge level to the current user. Relaxing the first assumption would re-

quire us to go beyond learning models that map each transitions to labels. Instead we

have to consider sequential labeling models (for example models based on LSTM or

CRF) of the type considered by Zhang et al. (2017) to capture the human’s expecta-

tions. For example, we considered a simple extension of the warehouse domain where

the human believes the robot should visit two locations (i.e the human state contains

variables that record whether the user has visited the locations). Even though here

the user is considering a more detailed model, we were able to learn labeling models

of 80% accuracy by using simple CRFs. As for the second, instead of assuming that

all users are of the same type, a more reasonable assumption may be that the users

could be clustered into N groups and we could learn a different labeling model for

each user type. Now we still have a challenge of identifying the user type of a new user

and one way to overcome this would be by adopting a decision-theoretic approach to
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this problem and modeling it as a POMDP. In fact this method was investigated by

Soni et al. (2021).

The work discussed in this chapter only covers explanations that allow the user

and the system to reconcile any model difference. This only covers a part of the entire

explanatory dialogue. Even if there is no difference in models, the user may still have

questions about parts of the policy or may raise alternative policies they think should

be followed. This may arise from a difference in inferential abilities and may require

providing information that is already part of their deductive closure eg: help them

understand the long term consequences of taking some actions. Once you have access

to a set of such messages one could use a method similar to the one described in the

chapter to find the set of helpful ones. Unlike the model reconciliation setting where

the messages stand for information about the model, it is not quite clear how one

could automatically generate such messages.
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Part II

ADDRESSING INFERENTIAL

ASYMMETRY
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Chapter 8

PART II OVERVIEW

This part of the thesis will focus on techniques I have helped develop that have tried

to address the second dimension of human-aware explanation generation, namely

Asymmetry in Inferential Capabilities. The majority of Part II will focus on a series

of techniques for explicit contrastive explanations that will primarily leverage state

abstractions to simplify the model information provided to the user. However, in the

closing chapter of Part II, we will see how these individual works could potentially

be recontextualized and understood as an instance of the larger framework of model-

simplification.

8.1 Structure for Part II and Technical Contributions

Part II will be divided into four chapters

1. Chapter 9 In this chapter we will introduce the basic explanation generation

framework, which we will refer to as Hierarchical Expertise-Level Modeling or

HELM. The rest of the chapters will cover the progressive generalization of

this basic framework. In this foundational chapter we will look at the simplest

formulation of the framework designed for deterministic planning problems.

This version will take as input a set of fully specified but invalid plans as the

foils expected by the user and try to identify the most abstract version of the

robot model, where the invalidity of the foils can be established. In addition, to

looking at the basic version, we will also discuss a variant of HELM that support

explanation of suboptimality, one that supports cases where the human could
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have incorrect beliefs about the robot model and also perform analysis on how

the system designer could enforce their preference on types of abstract models to

be used for explanation. We will also establish the computational complexity

of generating the basic explanation (which is identified to be NP-Complete),

and also run user studies that evaluate the effectiveness of state-abstraction in

explanations.

2. Chapter 10: In this chapter, we present the first generalization of HELM, one

where we relax the assumption that foils have to be fully specified plans. Instead

we look at a framework that can support partial foils, namely, cases where the

user only provides a partial specification of plans they were expecting. This

brings up an entirely new problem, namely that of explaining the unsolvability

of planning problems. As we will see, explaining the infeasibility of partial

foils, corresponds to establishing the unsolvability of a constrained planning

problem. Thus the primary focus of this chapter will be to extend HELM to

support explaining the unsolvability of planning problems. In addition to the

state abstraction, this version will also support another model simplification,

namely identifying an unachievable subgoal for the problem. This will help

further simplify the model, by decomposing the problem horizon the user would

have to reason about. We will again present results from user studies that verify

the effectiveness of this version of the framework.

3. Chapter 11 This chapter will see us further generalizing the framework, by

allowing it to support FOND problems. As part of the generalization, we will

map over the tools we had developed in Chapter 10 to support partial foils in

the context of deterministic domains to domains where actions could potentially

have non-deterministic effects. We will then use this updated framework to
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develop a tool for debugging non-deterministic domains that are designed to

model conversational agents. We will see how this tool allows domain authors

to identify potential bugs in the domain description they may have designed.

4. Chapter 12: In this chapter, we will present a generalized framework for cre-

ating explanations that address human queries that arise from asymmetry in

inferential capabilities. This framework will be built around the concept of an

explanatory property, whose establishment in the human mental model can help

resolve user queries and model-simplification transformations that will generate

simplified versions of the robot model where it is easier to establish a spe-

cific explanatory property. We will ground this framework within the context

of stochastic planning problems and will look at various model-simplification

transformations, including versions of state abstraction and problem decompo-

sition. This chapter will also look further into the idea of using an explanatory

witnesses as another way of alleviating the inferential burden.

8.2 Important Takeaways

One of the main takeaways from this part of the thesis is the effectiveness of

the three strategies we had outlined in Chapter 1, namely, allowing for explicit user

queries, model-simplification and the use of explanatory witnesses. We have also seen

that these aren’t mutually independent techniques and if we use the right combina-

tion, the effectiveness of the sum may be greater than the parts. In terms of the next

step the obvious one would be to build on the framework laid out in Chapter 12. The

specific transformations and explanatory witnesses presented in that chapter only

represents a small portion of the possibilities. Additionally, much more work needs

to be done in better understanding the human computation model and how different
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transformations may influence the final inferential burden placed on the human. It is

also worth mentioning that the versions of ideas presented in this section have also

been used outside explaining plans and sequential decisions. For example, local ap-

proximation of a model transformation we look at in Chapter 12 was first introduced

for classification problems (Ribeiro et al., 2016). Additionally, a lot of work in post-

hoc explanations for XAI try to focus on creating simpler and easy to under proxy

models (Lakkaraju et al., 2020), which can be seen as model-simplification. However,

we should note that in addition to model-simplification these methods also generally

use a different user-understandable feature set to specify these proxy models. We will

be covering such model translations in the next part of the thesis. Finally, generating

counterfactual cases, a type of explanatory witness we noted in Chapter 12, is also

popular in explainable machine learning.
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Chapter 9

HIERARCHICAL EXPERTISE LEVEL MODELING

In part-I of the thesis, we looked at explanatory methods that are designed to ad-

dress human confusion (i.e., the mismatch in the human’s expectations and robot’s

decisions) that arise from the difference in knowledge between the human and the

robot. As we discussed in Chapter 1, this could be one of many reasons why humans

may be confused. In this chapter, we will start by introducing a framework that is

designed to address the second dimension.

In this chapter, we propose a new approach to this problem where the agent

explains its ongoing or planned behavior in a way that is both tailored to the user’s

background and is designed to reduce cognitive burden on the user’s end. This is done

by modeling a user’s expertise, or the level of detail at which a user understands the

task using abstracted models. We can estimate this level based on questions that the

user asks and provide explanations that are close to this estimated level of expertise.

We consider explanations in the framework of counterfactual reasoning, where a

user who is confused by the agent’s activity (or proposed activity) presents alternative

behavior that they would have expected the agent to execute. This aligns with the

widely held belief that humans expect explanations to be contrastive (Miller, 2017a).

In keeping with the terminology used in social sciences literature, we will denote the

set of alternative behaviors as foils to the proposed robot behavior.

Specifically, we present the Hierarchical Expertise-Level Modeling or the

HELM approach for facilitating such context and user-specific explanations. We

assume that the user’s understanding of the task is an abstraction of the model used by

the robot; which captures both the limited information and computational capabilities
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of the user. HELM generates appropriate explanations by searching through a model

lattice of possible abstractions of the agent’s model. The model lattice provides a

concise way for the system designer to encode their prior knowledge about potential

users. Each model within this lattice represents a different level of understanding of

the task, with the highest fidelity representation (corresponding to the most detailed

understanding of the domain used by the robot) forming the base of the lattice and

the model representing the most naive understanding of the task (for example one

held by a lay person) forming the highest nodes. Since the user’s level of expertise is

unknown to the agent, it has to estimate the human model before searching for an

explanation.

We focus on contrastive explanations, where an explanation that is an answer to

a question of the form “Why P and not Q?”, in our case, P and Q are stand-ins for

the current robot plan and the foil respectively.

Specifically, our explanations will consist of model information that may be absent

in the user’s abstract model and possible proofs for foil failure. Thus, in addition to

helping convince the user of the incorrectness of the foils in question, the explanations

should also shift the user’s model to a more accurate model in the lattice. This

approach could be understood as a variant of the model refinement methods discussed

in the counter-example guided model checking (CEGAR) literature (Clarke et al.,

2000). Our methods extend these principles to settings with uncertainty regarding the

current level of abstraction of the model (a non-issue in the model-checking settings

where CEGAR methods are typically used).

In addition to introducing the basic framework, some of the other contributions

of this chapter will include;

• We consider the use of non-standard lattices as a way to allow designers to

incorporate more information about the user’s model into the explanation gen-
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eration process and discuss potential computational tradeoffs introduced by the

use of such lattice types over the ones considered in the rest of the chapter.

• We investigate the use of such methods for domains that contain state dependent

costs (hence affected by the abstraction) and discuss the potential explanatory

dialogue that could occur in such settings.

• We also show how our method could be used in cases where the user model

may not just be abstract but the user may also hold erroneous beliefs about the

task.

• We perform a user study to verify the utility of abstraction in generating ex-

planations that are easier for users to work with.

The rest of this chapter is structured as follows. Section 9.1 a brief overview of the

background and in Section 9.2 we present our formal framework. Section 9.3 covers

different approaches for generating explanations and sections 9.3.1, 9.3.2 and 9.3.3

extend these methods to more general settings. Section 9.4 presents evaluations of

the method. In section 9.5 we will discuss some related work and Section 9.6 will

delve into the relationship between the framework introduced in this chapter and the

ones discussed in Part I of this thesis.

9.1 Background

In this Chapter, we focus on abstractions that form models by projecting out

state fluents. While the presentation in the following sections is equally valid for both

predicate and propositional abstractions, we will focus on propositional abstractions

to keep our formulation clear and concise and later discuss potential changes required

to meet the requirements of predicate abstractions. We will look at deterministic
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Figure 9.1: An Illustration of the Hierarchical Explanation Process. The Human

Observer Who Views the Task at a Higher Level of Abstraction Expects the Rover to

Execute a Different Plan from the One Chosen by the Rover. The Rover Presents the

Human with an Explanation It Believes Will Help Resolve the Foils in the Human’s

Updated Model.

planning models of the type discussed in Chapter 2 (Section 2.1). To simplify the

discussions, we will follow a slightly different notational scheme from what was used

in Chapter 2. We will start by focusing on models with unit action costs and the

model will be given by the tuple M = 〈F, S,A, I,G〉, where S is the state space

defined using the fluent set F .

Similar to previous part, each action a ∈ A is associated with a set of positive pre-

conditions pre+(a) (specified as a conjunction of propositions) and negative precondi-

tions pre−(a) that need to hold for the effects (ea) of that action to be applied to a par-

ticular state. Each effect set ea can be further separated into a set of add effects add (a)

and a set of delete effects del (a). We will eschew from using a separate transition func-

tion and denote the result of executing an action a on a state s by using the notation

a(s), which is defined as a(s) = (s∪add (a))\del (a), if pre−(a) ⊆ s ∧ pre−(a)∩s = ∅.

A plan π is again give as a sequence of actions (〈a1, .., an〉, n being the size of the
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plan), and a plan is said to solve M (i.e, π(I) |=M G) if π(I) ⊇ G. Note that unlike

the previous part, where the differences in action definitions where reflected in the

transition function, we will use the parameterized |=· to capture these differences.

Automated planning has a long tradition of employing abstraction both for plan

generation (cf. (Sacerdoti, 1974)) and for generating heuristics (cf. (Seipp and

Helmert, 2018; Keyder et al., 2012)) and a number of different abstraction schemes

have been proposed in these works. In fact, state abstractions as presented in this

work have been widely used in pattern databases and are referred to as projections in

that literature (cf. (Culberson and Schaeffer, 1998; Edelkamp, 2000)). Following dis-

cussion presented by Seipp and Helmert (2018) and Bäckström and Jonsson (2013),

we will also use the concept of a transition system induced by the planning model to

define state abstractions. Intuitively, a transition system constitutes a graph where

the nodes represent possible states, and the edges capture the transitions between the

states that are valid in the corresponding planning model.

Definition 14. A propositional abstraction function fΛ for a set of propositions Λ

and state space S, defines a surjective mapping of the form fΛ : S → X, where X

is a projection of S, such that for every state s ∈ S, there exists a state fΛ(s) ∈ X

where fΛ(s) = s \ Λ.

Definition 15. For a planning model M = 〈F, S,A, I,G〉 with a corresponding

transition system T , a model M′ = 〈F ′, S ′, A′, I ′, G′〉 with a transition system T ′

is considered an abstraction of MMM for a set of propositions Λ, if for every transi-

tion s1
a−→ s2 in T corresponding to an action a, there exists an equivalent transition

fΛ(s1)
a′−→ fΛ(s2) in T ′, where a′ is part of the new action set A′.

We will slightly abuse notation and extend the abstraction functions to models
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and actions, i.e in the above case, we will haveM′ ∈ fΛ(M) (where fΛ(M) is the set

of all models that satisfy the above definition for the set of fluents Λ) and similarly

we will have a′ ∈ fΛ(a). As per Definition 15, the abstract model is complete in the

sense that all plans that were valid in the original model will have an equivalent plan

in this new model. We will use the operator @ to capture the fact that the model

M′ is an abstraction of M, i.e if M @M′ then there exist a set of propositions Λ

such that M′ ∈ fΛ(M).

9.1.1 Designing Complete Abstractions

While there exists a number of works that have looked at the problem of de-

signing abstractions (cf. (Srivastava et al., 2016; Sacerdoti, 1974; Bäckström and

Jonsson, 2013)), unfortunately many of these works have considered directly updat-

ing transition system or using specialized or more expressive problem formulation

to capture abstract models. Thankfully, the fact that we are interested in complete

abstractions (as opposed to sound abstractions) means we can employ simpler model

transformation schemes to generate abstract models. In particular, we will consider

transformations that simply drops the set of literals to be abstracted from all the

action definitions, i.e,

Theorem 4. For a given model M = 〈F, S,A, I,G〉 and a set of propositions Λ,

a model M′ = 〈F ′, S ′, A′, I ′, G′〉 is a complete abstraction under safe execution se-

mantics for Λ, if F ′ = F − Λ, S ′ = [S]fΛ
, I ′ = fΛ(I), G′ = G \ Λ and for ev-

ery a ∈ A (where a = 〈pre+(a), pre−(a), eff+
a , eff−a 〉) there exists a′ ∈ A′, such that

a′ = 〈pre+(a) \ Λ, pre−(a) \ Λ, eff+
a \ Λ, eff−a \ Λ〉.

Proof Sketch. To see why the new model would be an complete abstraction, consider

a transition 〈s, a, s′〉 induced by M. Now as per the definitions of safe transition
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systems, we know that s ⊆ pre+(a) and s ∩ pre−(a) = ∅ and s′ = s \ eff−a ∪ eff+
a . Its

easy to see that given this setting, (s\Λ) ⊆ (pre+(a)\Λ) and (s\Λ)∩(pre−(a)\Λ) = ∅,

which means there must be an action a′ ∈ A′ that is executable in fΛ(s). Similarly we

can show the result of executing a′ must be fΛ(s), this shows that M′ is a complete

abstraction ofM as every transition induced by it is present in the transition system

induced by M′.

An important point to note here is that this transformation scheme generates a

unique abstract model for each model and proposition set, and we will denote this

unique model as fΛ(M). For the rest of the chapter, we will mainly focus on this

method to induce the abstractions, but general framework of explanation generation

discussed in this chapter can be adapted to other methods of generating abstract

models. In cases, where we prove specific results or present optimization that rely

on this abstraction procedure we will denote the abstraction function by f safe
Λ to

differentiate it from other methods. With the definition of abstraction and related

notations in place, we will look at our explanatory setting and a way to capture the

space of possible user models that would allow for efficient estimation of unknown

user model given user queries. While the above operation is defined for propositional

fluents, we can perform similar operations on the lifted domain, where projecting out

a predicate would correspond to projecting out a set of propositional fluents from the

grounded domain.

9.2 Hierarchical Expertise-level Modeling

As mentioned earlier, we are investigating explanatory settings where the user’s

understanding of the task can be represented as an abstraction of the robot’s model.

While the exact level of abstraction may be unknown, given a set of candidate state

fluents that may be missing from the human model, we can capture the potential
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models and their relationship through a model lattice

Definition 16. For a model M#, the model lattice LLL is a tuple of the form L =

〈M,E,P, `〉, where M is the set of lattice nodes such that M# ∈ M and ∀ M′ ∈

M,M# v M′, E is the lattice edges, P is the superset of propositions considered

for abstraction within this lattice and ` is a function mapping edges to labels. Ad-

ditionally, for each edge ei = (Mi,Mj) there exists a proposition p ∈ P such that

fp(Mi) =Mj and `(Mi,Mj) = p.

Thus each edge in this lattice corresponds to an abstraction formed by projecting

out a single proposition (represented by the label of the edge). We can also define a

concretization function γp that retrieves the model that was used to generate the given

abstract model by projecting out the proposition p, i.e, γp(M) =M′ if (M′,M) ∈ E

and `(M′,M) = p else γp(M) =M.

For a given lattice, if each node in M has an incoming edge for every proposition

missing from its corresponding model then we will refer to such lattices as being

Proposition Conserving lattices.

Definition 17. A lattice L is proposition conserving-iff for any modelM∈M (M =

〈PM, SM, AM, IM, GM〉) and ∀p ∈ P, if p is not in PM then there exists a model

M′ ∈M, such that (M′,M) ∈ E and `(M′,M) = p).

Notice that enforcing conservation of propositions doesn’t require any further

assumptions about the human model and can be easily ensured while generating the

lattice. Additionally, we will call a proposition conserving lattice that contains an

abstract node corresponding to each possible subset of P as the Complete Abstraction

Lattice for M given P. The earlier parts of this chapter will assume a proposition

conserving lattices as they will allow us to simplify discussions and provide efficient
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solutions. In later sections, we will relax these assumptions and will look at potential

tradeoffs for using non-proposition conserving lattices.

We also assume that all abstraction functions used in generating the models in

the lattice are commutative and idempotent, i.e., fp2(fp1(M)) = fp1(fp2(M)) and

fp1(fp1(M)) = fp1(M). In the wider literature, a lattice is generally defined to have

a unique maximal element and a unique minimal element. While the abstraction

lattices we consider in this work will have a unique minimal element (i.e the most

concrete nodes), we do not assume that the lattices have a single maximal node

(Figure 9.2 presents an example lattice that does not have a unique maximal node),

in that sense the abstraction lattice may be better understood as meet-semilattices,

but we will use the term model lattice or abstraction lattice for convenience.

As mentioned earlier, we consider an explanation generation setting where the hu-

man observer (H) uses a task model (this model will be denoted asMR
h = 〈FH , SH , AH , IH , GH〉),

that is a more abstract version of the robot’s model (MR = 〈FR, SR, AR, IR, GR〉).

While the robot may not knowMR
h , it knows thatMR

h is a member of the set M for

the lattice L. The human comes up with a foil set ΠF = {π1, π2, ..., πm} that the

robot needs to refute by providing an explanation regarding the task. The explana-

tion should contain information about specific domain properties (i.e., state fluents)

that are missing from the human’s model, how these properties affect different actions

(For example, which actions use these propositions as preconditions and which ones

generate/delete them) and how the inclusion of these fluents result in the invalidity

of the given foils. To illustrate the utility of such explanations consider an example

involving a simplified version of the rover domain mentioned earlier.

Example 1. Let us suppose that the rover uses a modified version of the IPC rover

domain (International Planning Competition, 2011) that also takes into account the

battery level of the rover. Each rover operation has a different energy requirement,
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and the battery level needs to be above a predefined threshold for it to execute them,

e.g., it can perform rock sampling only if the battery level is above 75%. Furthermore,

the rover needs to visit the base station (i.e., the lander) and perform a reset action

to recharge its batteries.

The rover knows that the human observer is at most ignorant of its energy re-

quirements, ability to use solar cells and/or storage capabilities. So the model lattice

L needs to consider abstractions corresponding to the following propositions

P={battery level above 25 perc, battery level above 50 perc,

battery level above 75 perc, full store1, solar panels activated}.

Figure 9.2 shows the lattice that the robot would use in this setting. Here we will

create each abstract model by following the process discussed in section 9.1.1. For

example, consider the action sample rock store0 w1, it has the following definition

〈{battery level above 75 perc, at w1, empty store1, has store store1}, {},

{full store1, has rock sample}, {empty store1, battery level above 75 perc}}〉

Now in an abstract version of this model, if the propositions full store1 and bat-

tery level above 75 perc are dropped the definition becomes

〈{at w1, has store store1}, {},

{has rock sample}, {empty store1}}〉

Here the robot presents the plan

πR = 〈 navigate w0 lander, reset at lander,

navigate lander w1, sample rock store0 w1〉
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and a naive observer may respond by proposing the foil set with a single plan

F = {〈 navigate w0 w1, sample rock store0 w1 〉}

If the observer was an engineer, they might instead raise a foil that already takes into

account the energy requirements

Π
′
F = {〈 navigate w0 w1,

receive energy from solar cells, sample rock store0 w1 〉}

If the robot knew that the human was ignorant about all the battery level predi-

cates and nothing else, the robot could help resolve the naive foil by informing them

about the fact that action sample rock requires the battery to be above 75% (i.e

describing the proposition battery level above 75 perc). In terms of the human model,

this would involve setting the value of the proposition battery level above 75 perc false

in the initial state, updating the precondition of sample rock store0 w1 to include the

fact (among other actions) and adding it as an add effect to the action reset at lander.

In this updated model the human foil can no longer achieve the goal. In the case,

of expert foil, the robot would need to inform the user about the proposition so-

lar panels activated and that the action receive energy from solar cells require the solar

panels to be activated which is not true for the rover. Thus in each case explana-

tions to be provided to user can be generated once we know the set of propositions

whose concretization is required to refute the given foils (henceforth referred to as

explanatory fluent set).

Definition 18. Let E = {p1, ..., pn} be a set of fluents, then E is said to be an ex-

planatory set for the human model MR
h and a foil set ΠF if

∀π ∈ ΠF , π(IγE(MR
h )) 6|=γE(MR

h ) GγE(MR
h )
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Figure 9.2: A Possible Abstraction Lattice for the Rover Domain.

Where γE(MR
h ) is the model obtained by applying the concretizations corresponding

to E on the model MR
h .

In the case of projection based abstractions of the form defined in Section 9.1.1,

we can directly provide the model components covered by the explanatory fluent set

as part of the final explanatory message provided to the user. For other abstraction

techniques, we may need to employ more specialized methods to generate explanatory

messages from the fluents. In Example 1 if we are to focus on the naive foil, the rover

would have difficulty coming up with a single explanation as it does not know MR
h .

However, it can restrict its attention to just the models that are consistent with the

foils. In this scenario, it would correspond to {c2, c7, c8, c11, c12, c14, c15}.

Now we need to find a way of generating sets of explanatory fluents given this

reduced set of models.

Proposition 13. Let Mi be some model in L such that MR
h vMi. If E is explana-

tory for Mi and some foil set ΠF , then E must also explain ΠF for MR
h .
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This proposition directly follows from the fact that for a proposition conserving

lattice γE(Mi) will be a logical weaker model than γE(MR
h ). Next, we will define the

concept of a minimal abstracting set for a given lattice L and foils ΠF

Definition 19. Given an the abstraction lattice L = 〈M,E,P, `〉 and a foil set ΠF ,

the minimal abstracting set MΠF
min is the maximal elements of the subset of all the

models that are consistent with ΠF .

MΠF
min = {Mi|Mi is a maximal element of Msat} where Msat = {M | M ∈ M,∀π ∈

ΠF(π(IM) |=M GM)}

Proposition 14. For a given model lattice L, the minimal abstracting set MΠF
min is

a subset of the maximal elements of the entire abstraction lattice.

The above property ensures that when searching for the minimal abstracting set,

we do not need to test the entire set of nodes or even need to know the entire lattice. In

Example 1, the minimal abstracting set for the naive foil will be MΠF
min = {c14, c15}.

If we can find an explanation that is valid for all the models in MΠF
min then by

Proposition 13 it must work for MH as well.

Proposition 15. For a given model lattice L and a set of foils ΠF and the minimal

abstraction set MΠF
min, there exists an explanatory fluent set E such that ∀ M′ ∈MΠF

min

and ∀π ∈ ΠF ,

π(IγE(M′)) 6|=γE(M′) GγE(M′)

It is easy to see why this property holds, as any explanation that involves con-

cretizing all possible propositions in P satisfies this property.

In most cases, we would prefer to compute the minimal or cheapest explanation

to communicate. If all concretizations are equally expensive to communicate to the
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explainee, then this would correspond to finding the explanatory fluents set with

the smallest size. For the naive foil in the rover example, even if the human is un-

aware of multiple task details, the robot can easily resolve the explainee’s doubts by

just explaining the concretizations related to the proposition battery level above 75 perc

without getting into other details. Describing the details of remaining propositions

is unnecessary and in the worst case might leave the human feeling overwhelmed and

confused. In this case, the explanation would just include information regarding bat-

tery levels and how to identify when the battery level is or above 75% and model

updates like

sample rock-has-precondition-battery level above 75 perc

sample soil-has-precondition-battery level above 75 perc

...

Before delving into the optimization version of the problem, let us look at the com-

plexity of the corresponding decision problem

Theorem 5. Given a the set of foils ΠF and the corresponding minimal abstraction

set MΠF
min for a modelM, the problem of identifying whether an explanatory fluent set

of size k exists for the complete lattice (which is not given) defined over an abstraction

function f is NP-complete, provided the abstract function generates planning models

that belong to the class described in Section 9.1 in polynomial time.

Proof (Sketch). The fact that we can test the validity of the given explanation in

polynomial time (size of the explanation is guaranteed to be smaller than |P|) shows

that the problem is in NP. We can show NP-completeness by reducing the set

covering problem (Bernhard and Vygen, 2008) to an instance of the explanation

generation problem. Let’s consider a set covering problem with U as the universe

set and S as the set of sub-collections. Now let us create an explanation generation
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problem where the set of foils ΠF is equal to U and the propositions in the set P

contain a proposition for each member of S. Additionally concretizing with respect

to a proposition will resolve only the foils covered by its corresponding subset in S. For

this setting, the MF
min consists of a single node that contains none of the propositions

(and hence all the foils hold) and the concrete model contains all of them. Now if

we can come up with a set of explanatory fluents of size k in this setting, then this

explanation corresponds to a set cover of size k.

The above result considers a case where the lattice needs to be generated on the

fly from the minimal abstraction set. Though there may be cases where the designer

may be able to provide an explicit and smaller non-proposition conserving lattice

upfront. As we will see in Section 9.3.1, such lattices can be used to capture the

designer’s knowledge about the end-users.

9.3 Generating Optimal Explanations

As mentioned earlier, we are interested in producing the minimal explanation.

Additionally, in most domains, the cost of communicating the concretization details

could vary among propositions. An explanation that involves a proposition that

appears in every action definition might be harder to communicate than one that

only uses a proposition that is part of the definition of a single action.

In addition to the actual size, the comprehensibility of the explanations may

also depend on factors like human’s mental load, the familiarity with the concepts

captured by the propositions, etc.. To keep our discussions simple, we will restrict the

cost of communicating an explanation to just the number of unique model updates

this explanation would bring about in the human model.We will use the symbol CEp

to represent the cost of communicating the changes related to the proposition p and

also overload it to be applicable over sets of propositions.

162



Now our problem is to find the optimal explanation (represented as Emin) for a

given set of foils ΠF or more formally

Definition 20. A set of fluents E is said to be the optimal explanatory fluent set for

the human model MR
h and a foil set ΠF , if

1. if E is an explanatory set and

2. there exists no other set Ê, such that Ê is also an explanatory set and CEE > CE
Ê

.

Given the fact that the human model is not known to start with, it may appear

that there is no way to generate optimal explanations for the human model directly.

A possible alternative might be to try identifying the set of fluents that is optimal for

the set of models that could be MR
h . Calculating such an explanation naively could

be extremely expensive as identifying all possible candidates for the human model

would involve testing each node in the lattice for whether its a potential candidate

for the human model and then searching over the space of all explanatory fluent set to

find one that is optimal for the entire set of candidate models (where the optimality

for a set of models is defined to be the cheapest set of fluents that is explanatory

for all the models in the set). Thankfully, the properties of the lattice allow us to

compute optimal solutions without keeping track of the entire set. Moreover, for

lattices containing abstract models generated using procedures discussed in Section

9.1.1, we will see how fluent sets that are optimal for minimal abstracting set are

still optimal for the original human model. That is uncertainty over human models

results in no loss of optimality. But before proving that property, we will define the

idea of the resolution set, that captures the specific plans resolved by concretizing the

given propositions (i.e the proposition appears as an unsatisfied precondition or goal

in the plan).
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Definition 21. For a set of models M′, a foil set ΠF and a proposition p, the resolu-

tion set RΠF (M′, p) gives the subset of foils that no longer holds in the concretized

models generated through f safe
Λ , i.e

RΠF (M′, p) = {π|π ∈ ΠF ∧ (∀M′ ∈M′(π(Iγp(M′)) 6|=γp(M′) Gγp(M′) ∧

π(IM′) |=M′ GM′))}

The idea of generating resolution sets are again closely related to the idea of

resolving counter-examples used in CEGAR based method. We will also use RΠF

to also represent the set of foils resolved by a set of propositions. For notational

convenience, we will use RΠF (M′, {}) to capture the subset of foils that do not hold

in the current model set M′.

Proposition 16. For a set of model M′ and a foil set ΠF

RΠF (M′, {p1, p2}) = RΠF (M′, {p1}) ∪ RΠF (M′, {p2})

The above property implies that concretizing any n propositional fluents cannot

resolve foils that weren’t resolved by the individual fluents. The above property

follows from the fact that adding a proposition into the model only resolves a foil if

it adds a precondition not supported by previous actions in the plan. Since this is

independent of other fluents already part of the abstraction, we can see that a set of

fluents will only resolve the foils that are resolved by the individual elements of that

set.

Proposition 17. For two models M1, M2 and a set of foils ΠF ,

if M1 = f safe
Λ (M2, {p1, .., pk}) then for any proposition p,

RΠF ({M1}, {p} ⊇ RΠF ({M2}, {p}) \ RΠF ({M2}, {})
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The proposition can be established by following the definition of resolution set

and rewriting the lefthand side of the equation as

RΠF ({M2}, p) = RΠF ({M1}, {p1, .., pk} ∪ {p})

From Proposition 16 we know

RΠF ({M2}, p) = RΠF ({M1}, 〈p1, .., pk〉 · 〈p〉)

= RΠF ({M1}, p) ∪RΠF ({M1}, {p1, .., pk})

RΠF ({M2}, p) = RΠF ({M1}, 〈p1, .., pk〉 · 〈p〉)

= RΠF ({M1}, p) ∪RΠF ({M2}, {})

Now removing elements RΠF ({M2}, {}) from both LHS and RHS we get

RΠF ({M2}, p) \ RΠF ({M2}, {}) = RΠF ({M1}, p) \ RΠF ({M2}, {})

Which proves our original assertion.

This proposition directly leads to the following observation.

Proposition 18. Let MΠF
min be the minimal abstracting set for a foil set ΠF andMR

h

be the human model. if every model in MΠF
min if formed from MR

h through f safe
Λ , then

for any fluent set Emin that is optimal for MΠF
min then Emin must be optimal for MR

h .

We can show the validity of the above proposition through contradiction. To

start with from the definition of foils we know, RΠF ({MR
h }, {}) = ∅ and thus

RΠF (MΠF
min, {}) = ∅. Let us assume there exists an explanatory set E1 that is optimal

for human model but not optimal for MΠF
min. This could only be due to two possible

reasons, i.e., E1 is not an explanatory set for MΠF
min or there exists another set E2
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that is optimal for MΠF
min but not applicable for MR

h . Through, Proposition 17 we

have already established that any explanatory fluent set for human model must be an

explanatory set for MΠF
min. Similarly, from Proposition 13, we know any explanatory

set applicable for an abstract model set must be applicable for the concrete model as

well.

Now the question is how to exactly identify Emin, one possibility is to perform

an A* search (Hart et al., 1968) over the space of possible fluent sets to identify

Emin. Each search state consists of the minimal set of abstract models for the human

model given the current explanation prefix. We will stop the search as soon as we

find a state where the foils no longer hold for the current minimal set. In addition

to the systematic search, we can see that the specifics of the setting also allows us to

leverage greedy search (described in Algorithm 7). In each iteration of this search,

the algorithm greedily chooses the proposition that minimizes Cp

|Π′F∩RΠF (M′,p)|
, where

Π
′
F is the set of unresolved foils at that iteration and the search ends when all foils

are resolved.

Theorem 6. The explanatory fluent set Ê generated by Algorithm 7 for a set of

foils ΠF and a lattice L = 〈M,E,P, `〉 is less than or equal to (ln k) ∗ CEEmin, where

CEEmin is the cost of an optimal explanatory fluent set and k represents the maximum

number of foils that can be resolved by concretizing a single proposition, i.e, k =

maxp |RΠF (Mmin, p)|.

Proof (Sketch). We will prove the above theorem by showing that Algorithm 7 cor-

responds to the greedy search algorithm for a weighted set cover problem. Consider

a weighted set cover problem 〈U, S,W 〉 such that the universe set U = ΠF , the sub-

collections set S is defined as S = {sp|p ∈ P} where sp = RΠF (Mmin, p) and the cost

of each subset sp is gives as W (sp) = CEp . Proposition 16 ensures that the size of
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Algorithm 7 Greedy Algorithm for Generating Ê

1: procedure Greedy-exp-search

2: Input : 〈ΠF ,L = 〈M,E,P, `〉〉

3: Output : Explanation Ê

4: Procedure:

5: curr model = 〈Mmin, F 〉

6: Ê = {}

7: Mmin ←MinimalAbstractModels(L,ΠF)

8: Precompute the resolution sets RΠF (Mmin, p) for each p ∈ P

9: while True do

10: M′,Π′F = curr model

11: if |Π′F | = 0 then return Ê . Return Ê if all the foils are resolved

12: else

13: pnext = argmin
p

( Cp

|Π′F∩RΠF (M′,p)|
)

14: Mnew = {γpnext(M)|M ∈M′}

15: curr model = 〈Mnew, F \ RΠF (M′, p)〉

16: Ê = Ê ∪ p

resolution set is a submodular and monotonic function. In this setting, the act of

identifying a set of propositions that resolve the foil set is identical to coming up with

a set cover for U in the new weighted set cover problem. Furthermore, we can show

that the optimal set cover Copt must correspond to the cheapest explanation Emin

(We can prove this equivalence using Propositions 13,15 and 16, we are skipping the

details of this proof due to space constraints). Algorithm 7 describes a greedy way

of identifying the cheapest set cover for this weighted set cover problem and thus

the minimal explanation for the original problem. For weighted set cover the above
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greedy algorithm is guaranteed to generate solutions that are at most ln k ∗W (Copt)

(Young, 2008), where k = maxs∈S |s| and this approximation guarantee will hold for

Emin as well.

We can use this algorithm to either generate solutions and or to calculate an

inadmissible heuristic for the previously mentioned A* search. For the heuristic gen-

eration, we will further simplify the calculations (specifically step 8 in Algorithm 7)

by considering an over-approximation of RΠF . Instead of considering the set of all

foils resolved by concretizing each proposition p, we will consider the set of foils where

p appears in the precondition of one of the actions in it. This set should be a superset

for RΠF for any proposition.

Now that we have formulated the basic form of explanation for this setting, we

will look at how we can relax some of the assumptions made in earlier sections and

how it effects the explanation generation problem. In particular, we will look at cases

where the lattices are no longer proposition conserving, the users may be raising foils

that are sub-optimal as opposed to invalid and finally how to support models with

noise.

9.3.1 Supporting Explanation Generation for Non-proposition Conserving Lattices

Proposition conserving lattices, in particular, complete lattices provide a concise

way for the problem designer to specify their knowledge about the end users. In

fact, with well-defined abstraction functions, they need only specify the most con-

crete model and the set of most abstract models to generate the rest of the lattice.

Unfortunately, there may be cases where such lattices may no longer be enough to

capture all information the system designer may be capable of providing about the

end users. For example, consider a scenario where a robot needs to put away gro-

ceries. The goal of the robot here is to put away a set of items in prespecified storage
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locations. In this case, medicines need to be put in the medicine cabinet while condi-

ments should be placed in kitchen shelves. In addition to these task-level constraints,

the robot’s operations are restricted by various motion level constraints that limit the

possible physical movements that the robot can perform, including possible ways an

object can be grasped and areas in the workspace it can reach. Clearly, these two

types of constraints are quite different in terms of the background knowledge needed

to understand them. While the task constraints correspond to some simple rules of

the task that are easy to explain to a lay user, understanding the motion constraints

require knowledge about robotics that is usually absent in most users. Thus there

is a natural hierarchy in the concepts related to this task. One way to capture such

information could be by controlling the order in which the various fluents are consid-

ered for abstraction, i.e., remove a particular set of fluents before moving to others

(thereby making the lattice non-proposition conserving). This means, the easier to

understand fluents would get introduced higher up in the lattice and the harder to

understand fluent appear lower in the lattice closer to the concrete node. The task

mentioned above is a particularly good fit for non-proposition conserving lattices be-

cause even the motion constraints could be captured at multiple conceptual levels.

In general, non-proposition conserving lattices are a useful tool to use when you have

settings where there are different propositions that capture the same phenomena but

at varying levels of detail or focus on different aspects. For example, in the case of

picking up an object, one could talk about the ability to pick up the object, picking up

the object by grasping a particular region and even grasping using a particular grasp

point on the object. We can organize the lattice in such a way that the propositions

are visited in the order that reflects the preferences of the end-user. For example, for

this scenario, we can arrange the concepts in such a way that simpler concepts (for

example propositions related to simple reachability) are tested before moving onto
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more complex concepts.

While there are reasons to choose non-proposition conserving lattices and we could

generate explanations using such lattices with some minor modifications on the solu-

tion method described before, the use of such lattices also have a few disadvantages.

The obvious one being that the designer now have to fully specify such lattices, also

the use of such lattices prevents the use of heuristics and greedy search described

in earlier sections. It should also be noted that when the foils can only be resolved

by introducing fluents from lower levels then the search would still need to search

through all the nodes in the above before identifying the nodes that resolve the foil.

Also once such a node is identified, it won’t be easy to separate the set of fluent that

actually contribute to resolution from those that are redundant (particularly when

there are multiple foils).

To overcome these shortcomings, we will allow designers to specify a non-proposition

conserving lattice while the explanation generation algorithm itself operates on a mod-

ified proposition conserving lattice that uses an updated cost function. To achieve

this, we will start by defining the concept of a well-formed lattice

Definition 22. An abstraction lattice L = 〈M,E,P, `〉 is said to be well formed, if

there exists a unique minimal node (i.e the most concrete model), thus for any model

M∈M, M# vM.

Any lattice we describe hence forth, will be assumed to be well-formed unless

specified otherwise. While the concept of minimum abstraction set remains the same

for a non-proposition conserving lattice, analyzing the results of concretizing the

human model with respect to explanatory fluents requires us to look at a new concept

named a completion of a lattice.

Definition 23. For a given well formed non-proposition conserving abstraction lattice
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L = 〈M,E,P, `〉, a second lattice L̂ = 〈M̂, Ê,P, ˆ̀〉 is said to be a completion if L̂ is a

proposition conserving lattice, such that, M ⊆ M̂, E ⊆ Ê and ` ⊆ ˆ̀

A completion is relevant in this setting, because if we allow the system to freely

choose propositions for the explanatory set, the updated human model (i.e the model

obtained after the explanation) may not be part of the original non-proposition con-

serving lattice but is guaranteed to be part of the completion. Note that completions

for a non-proposition conserving lattices are not unique, but in most cases we will

consider a minimal completion. We can create such a completion by starting with

the given lattice and adding any missing incoming edges iteratively (introducing new

models only if there exists no current nodes that correspond to the set of missing

propositions expected at the source of the edge).

Definition 24. Given a non-proposition conserving lattice L = 〈M,E,P, `〉, it’s com-

pletion L̂ = 〈M̂, Ê,P, ˆ̀〉, the human model MR
h ∈ M and the foil set ΠF , a set of

propositions E = {p1, ..., pn} is said to be a set of explanatory fluents if

∀π ∈ ΠF , π(IγE(MR
h )) 6|=γE(MR

h ) GγE(MR
h ) and γE(MR

h ) ∈ M̂

As the original human model is assumed to be part of the given lattice, it must

be part of the completion as well, moreover, the relation between the min abstraction

set and the human model is conserved in the completion as well. This means that any

set of explanatory fluents identified by using the minimum completion of the given

lattice would also be valid for the human model as well. Such a minimal completion

lattice, need not be created beforehand, but could in fact be generated online when

searching for the explanation. Unfortunately, directly using such a completion lattice

for explanation generation (once the min abstraction set is found), would result in

finding sets of propositions that ignore the information captured by the given lattice.
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To incorporate this information we need to not only use the completion we need to

consider a new cost function CEL for the explanation generation.

Proposition 19. Given a min abstraction set Mmin for a non-proposition conserving

lattice L = 〈M,E,P, `〉, we can use it’s completion L̂ = 〈M̂, Ê,P, ˆ̀〉 to identify the

explanatory fluents provided the cost of explaining a given proposition p is defined as

CEL(p) = CEp + max
M∈Mmin

L(p,M), where L(p,M) is a penalty, such that L(p,M) ∝ CE
P̂

where P̂ is the least costly set of propositions such that p ∈ P̂ and γP̂ (M) ∈M.

This new penalty term ensures that a proposition is considered for explanation

only after the propositions from higher levels of the given lattice is considered. Now

that we are dealing with explanations using a new proposition conserving lattice, all

earlier results directly carry over including the heuristic, though the search is less

efficient as calculating the cost for each node requires lookup of the given lattice.

Since the proposition conserving lattice is assumed to be provided upfront, we may

be able to precompute the costs.

9.3.2 Supporting Explanations for Sub-optimal Foils

We will now consider scenarios where the explainee raises foils that are valid but

may, in fact, be costlier than the one chosen by the robot. In such scenarios, we

would want the robot to explain why the current plan may be preferred, but such

explanations could be complicated by the fact that the actions in the domain may

have state-dependent costs, for example, the cost of picking up a light block may

be lower than picking up a heavier block. Here we would again need to present the

user with a set of fluents and associated action costs that allow the user to correctly

evaluate their alternate plans.

To investigate this setting, we will restrict our attention to cases where each
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action could be associated a set of positive conditional costs. We will consider a

slightly updated action definition, where each action a for a modelM is now defined

by a tuple of the form 〈preca, e+
a , e

−
a , CMa 〉, where preca, e

+
a and e−a are same as before

and Ca are the set of state dependent costs associated with the action a. CMa is itself

defined as a set of individual costs of the from 〈φ, c〉, where φ is a conjunction of state

literals, which when satisfied in a state causes the action a to induce a cost c (where

c ∈ R≥0). Now the cost of executing the action a at state s is defined

CMa (s) = Σ〈φi,ci〉∈CMa (κ(φi, s, ci))

Where κ(φi, s, ci) = ci if s |= φi else κ(φi, s, ci) = 0.

We will use the function CM to return the total cost of a plan for a given initial

state, i.e, for a plan π = 〈a1, ...., an〉 and an initial state I, CM(π, I) = CMa1
(I) + ...+

CMan (an−1(...(a1(I))...)).

Following the convention set by Geißer et al. (2016), we can assert that such a

domain model induces a transition system of the form T = 〈S, s0, Sg, L, T, CT 〉, which

is similar to the original transition system definition except that now each transition

is associated with a cost determined by both source state and action. An abstract

modelM′ with a transition system T ′ for a set of propositions Λ is defined in a similar

way with the cost of each transition (s, a, s′) given by CT ′(s, a, s′) = min({CT (ŝ, a, ŝ′) |

ŝ, ŝ′ ∈ S ∧ fΛ(ŝ) = s ∧ fΛ(ŝ′) = s′)}).

We will also update the explanatory setting a bit and assume that the robot

presents the user with the plan and the anticipated cost of the plan in the most

concrete model (denoted as CπR). The user responds by providing a foil set which

they believe is less costlier than the plan in question. Here we can define a set of

explanatory fluents to be
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Definition 25. A set of proposition E = {p1, ..., pn} is said to be explanatory

fluents for the human model MR
h and a foil set ΠF if

∀π ∈ ΠF , π(IγE(MR
h )) 6|=γE(MR

h ) GγE(MR
h ) ∨ CM

R
h (π, IγE(MR

h )) > CπR

Revisiting the abstraction lattice, given the fact that we are dealing with only

positive costs, the first property we can assert is that

Proposition 20. Given two modelsM1 andM2, such thatM1 vM2, then for any

plan π, we have C(π, IγE(M1)) ≥ C(π, IγE(M2))

This means that once we establish that a given foil is costlier than robot plan in a

model, then it holds in all models that are more concrete than that one. This insight

allows us to reassert Proposition 13 for this new extended definition of explanation

and by extension allows us to use the idea of the minimal abstraction set in this new

setting (Proposition 14 holds here as well).

This means that we can more or less directly use the search method discussed

for the in-validity case here directly. Unfortunately, in this setting the size of resolu-

tion set is no longer sub-modular and hence we can not leverage the greedy method

discussed for the pure invalidity case.

9.3.3 Supporting Explanations in the Presence of Human Models with Incorrect

Beliefs

An underlying assumption for most of the earlier discussion has been the fact that

the user’s model of the task can be represented as an abstraction of the robot model,

i.e. the user model may be imprecise but not incorrect. Unfortunately, this is not an

assumption that can be met in all scenarios. More often than not, the user may not

only be unaware of certain facts pertaining to the task but may also hold incorrect
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beliefs about it. Throughout this section, we will discuss how approaches discussed

in earlier sections can be used to handle such cases.

Formally, let the real (but unknown) user model be MR
h and we assert that this

model is an abstraction of some (again unknown) model M̂R that is defined over

the same set of fluents as MR, but may have errors in regards to action definitions,

perceived initial and goal state. Let us assume both M̂R andMR
h belong to the same

class of planning problems as defined in Section 9.1. Again let the set of alternate

plans raised by the user be ΠF . It is important to note that the reason the user thinks

these foils are valid may no longer be just due to missing fluents, but could also be

due to the user’s incorrect understanding of the task. This means that foils are not an

accurate way of identifying the user’s level of understanding, but we can still use the

foils to figure out the level of abstraction at which the foils can be refuted. Though

in scenarios with such models, we have to consider a complete lattice that contains

all possible fluents (i.e assuming user could be wrong about the use of any of the

fluents), i.e., the lattice we will use would be L = 〈M,E,P, `〉, where P = PR (defined

using f safeΛ ). We can now use the methods described in earlier sections to find a set

of explanatory fluents E that can refute the given set of foils. Once the information

regarding the explanatory fluents in provided to the user, irrespective of the other

fluents, the user should have a correct understanding of each fluents listed in E . Let

MR
h + E be the updated human model that contains the correct information about

E . Note that even though MR
h or MR

h + E may not be part of L, the abstraction of

this updated human model that projects out all propositions absent from E must be

part of the lattice L, i.e, fP\E((MR
h ) + E) ∈ γE(Mmin). In this scenario, γE(Mmin)

will be singleton set and we will represent the only element in this set as Mmin.

As per the definition of valid explanation, we know that RF (Mmin, E) = ∅ and since

γE(MR
h ) v γE(Mmin) and therefore the resolution set for γE(MR

h ) must also be empty.
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9.4 Evaluations

9.4.1 Empirical Evaluations on Explanation Generation for Invalid Foils

For our empirical evaluation, we wanted to understand how effective our basic ap-

proaches were in terms of the conciseness of the explanations produced, the solution

computation time and the usefulness of approximation. For the approximation, we

were interested in identifying the trade-off between decrease in runtime vs. reduction

in solution quality. Since both explanation for incorrect beliefs and non proposition-

conserving gets compiled down to finding explanation on proposition-conserving lat-

tices, we didn’t perform separate evaluations for those methods. All three explanation

methods discussed in this chapter (blind, heuristic and greedy) were evaluated on five

IPC benchmark domains (International Planning Competition, 2011). All the exper-

iments detailed in this section were run on an Ubuntu workstation with 64G RAM.

For each domain, we selected 30 problems from either available test sets or by using

standard problem generators (the problems sizes were selected to reflect the size of

previous IPC test problems). The lattice for each problem-domain pair was generated

by randomly selecting 50% of domain predicates and then generating a fully connected

proposition conserving lattice using that set of predicates. Since none of the models

contained any conditional effects, we created the abstract models by dropping the

propositions to be abstracted from the domain models (which are complete for these

domains). The foils were generated by selecting random models from the lattice and

creating plans from these models that do not hold in the concrete model. Each search

evaluated here, generates the set of proposition whose concretizations can resolve the

foils set ΠF . In actual applications, this set of propositions needs to be converted

into an explanan (the actual message) by considering how this proposition is used in

the robot model. Figure 9.4 shows the explanation generated by our approach for a
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Domain Name CP |P| |ΠF | Blind Search (Optimal) Heuristic Search Greedy Set Cover

Cost Size Time(S) Cost Size Time(S) Cost Size Time(S)

Barman

84.07 7 1 6.87 1 2.43 6.87 1 2.08 6.87 1 3.61

84 7 2 8.94 1.22 6.35 8.94 1.22 5.71 9.90 1.39 6.05

90.7 7 4 17.19 1.77 24.99 17.19 1.77 23.7 18.45 1.97 10.34

Rover

168.66 12 1 3.58 1 7.86 3.58 1 5.22 3.58 1 19.18

188.83 12 2 6.13 1.48 51.36 6.12 1.48 34.04 6.26 1.52 30.5

192.83 12 4 10.87 2 203.83 10.87 2 181.87 11.42 2.19 49.32

Satellite

53.01 4 1 18.73 1 2.23 18.73 1 1.92 18.73 1 1.49

60.77 4 2 32 1.61 7.21 32 1.6 5.86 32.53 1.7 3.04

62.73 4 4 43.27 2.29 18.67 43.27 2.29 16.42 43.88 2.39 5.85

Woodworking

156.71 7 1 14.45 1 2.84 14.45 1 2.23 14.45 1 3.35

146.33 7 2 20.62 1.21 6.88 20.62 1.21 4.93 21.38 1.38 6.25

154 7 4 28.62 1.69 24.70 28.62 1.69 19.49 30.41 2 12.13

Sokoban

220.6 3 1 51.21 1 1.51 51.21 1 1.35 51.21 1 1.28

151.72 3 2 94.52 1.55 3.93 94.52 1.55 3.35 98.31 1.73 2.59

220.69 3 4 136.41 2.22 8.75 136.41 2.22 8.3 141.93 2.37 5.23

Table 9.1: Table Showing Runtime/Cost for Explanations Generated for Standard

IPC Domains. Column |P| Represents Number of Predicates That Were Used in

Generating the Lattice, While CEP Represents the Cost of an Explanation That Tries

to Concretize All Propositions in P and Provides an Upper Bound on Explanation

Cost.

problem in Rover domain.

Table 9.1 presents the results from our empirical evaluation on the IPC domains.

The table shows the average cost/size of each explanation along with the time taken

to generate them. Note that by size, we refer to the number of predicates that are part

of the explanation while the cost reflects the total number of unique model updates

induced by that explanation. We attempted explanation generation for foil set sizes

of one, two and four per problem.

Our main conclusion is that heuristic search seems to outperform blind search

in almost every problem and generates near-optimal solutions (Blind search always

generates the minimal explanation). Further, we saw that greedy search outperformed

heuristic search in most cases barring a few exceptions. The greedy search was able
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Figure 9.3: The Graph Compares the Performance of Greedy Set Cover Against the

Optimal Blind Search for |ΠF | = 4. It Plots the Average Time Saved by the Set

Cover and the Average Increase in Cost of the Solution for Each Domain.

to make significant gains especially for higher foil set sizes. This is entirely expected

due to the fact that step 8 in Algorithm 7 can be expensive for problems with long

plans (but still polynomial). This expensive pre-computation pays off as we move to

cases where Emin consists of multiple propositions. Additionally, we found out that

greedy solutions were quite comparable to the optimal solutions with respect to their

costs. For example in |ΠF | = 4 for satellite domain, while the greedy solution cost

took a penalty of ∼ 1.4% the search time was reduced by ∼ 68%. Figure 9.3 plots the

comparison between the time saved by the greedy search versus any loss in optimality

incurred by the greedy search.

9.4.2 Empirical Evaluations on Explanation Generation for Sub-optimal Foils

Next, we wanted to evaluate the empirical performance of the approach for do-

mains with state dependent cost. For this setting, since we don’t have standard

benchmark domains with this property, we chose standard IPC domains and modi-
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Figure 9.4: An Example Explanation Generated by Our System for IPC Rover Do-

main. The Human Incorrectly Believes That the Rover Can Communicate Sample

Information Without Explicitly Collecting Any Samples. While the Abstraction Lat-

tice in This Example Was Generated by Projecting out Upto 12 Predicates, the

Search Correctly Identifies Concretizations Related to (Have soil analysis ?R - Rover

?W - Waypoint) as the Cheapest Explanation (CEE = 2 as Opposed to CEP = 55)

fied them to include conditional cost updates. In particular, we chose blocksworld,

zenotravel, gripper and rover. For blocksworld, we introduced three new predicates,

namely heavy, light and unsteady each of which takes a block as an argument. For

each problem instance, we assigned each block to be either heavy or light and set

some of the blocks as unsteady. We also updated the stack action so that stacking

a heavy block on a light one or an already unsteady one cause the block to be un-

steady. We also set a high cost penalty for stacking any block on an unsteady one.

For zenotravel, we came up with three binary predicates near, farther and farthest that

takes cities as arguments. We also assigned a higher cost for traveling between far

away cities than nearby ones (so the optimal plan may involve the plane making a

lot more stops). For gripper, we again mark a ball to be heavy or light and now each

robot can also pick up two balls at the same time. We assign a high cost to picking

up heavy balls and picking up the second ball in a gripper that is already holding
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Domain Average Explanation Size Runtime

BLOCKS 4.4 8.319

Gripper 5.4 7.368

Rover 4 9.690

Zeno 6.6 8.905

Table 9.2: The Sample Runtime and Average Explanation Size for Five Problem

Instances from the Modified Domains.

a ball. We also provide the robot with a push action, that allows for it to move

heavy balls without accruing large cost.Finally in the case of rover domains, we set

some of the waypoints as being hilly area and communicating from these waypoints

are assigned higher costs. Table 9.2 presents the explanation generation time and

average explanation sizes for the modified domains. For each domain, we generated

five problems and the test was run using systems of the same configuration as Section

9.4.1. For Blocksworld we considered instances where the number of blocks spanned

from four blocks to 20, for Gripper all problems had two rooms and up to 12 balls and

for Rover domain problems had upto three objectives and four waypoints. Finally,

in Zenotravel all problems considered traveling between 10 cities and the number of

passengers ranged from 20 to 60. The fact plan being explained were generated using

optimal planners when possible and the foils were generated either using a satisficing

planner (Metric-FF (Hoffmann, 2003)) or hand written using knowledge about the

domain. As expected, the search was able to find the minimal number of predicates

to be included into the problem to resolve the foils, for example in Blocksworld, the

approach was able to correctly identify the predicate unsteady as being enough to

explain the foils in the example.
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In addition to the empirical results discussed in this chapter on classical planning

problems, the approaches discussed have also shown to be useful in modeling explana-

tory dialogue in the context of Task and Motion Planning (as shown in (Sreedharan

et al., 2018b)).

9.4.3 User Study to Evaluate Role of Abstractions in Explanation

In this section, we will consider one of the assumptions that we made throughout

the work, namely that providing the explanations at an abstract level would help

reduce the cognitive burden on the user’s end. Specifically, we will test the following

hypothesis

Hypothesis 1. Given two models M1 and M2, such that M1 @ M2 and M2 is

formed using methods presented in Section 9.1.1, a user would find it easier to work

with the more abstract model M2 when compared to M1

We will evaluate this hypothesis over two different dimensions. One with respect

to the subjective workload the user may experience when working with such a model

to achieve some task, and then with respect to the actual ability of the user to

successfully complete the task. For the former, we will employ NASA-Task Load Index

(NASA-TLX) survey (Hart and Staveland, 1988), while for the latter we measure

the time taken by the user to complete the task. NASA-TLX is a very influential

and widely used method to gauge the subjective workload experienced by the user.

NASA-TLX, divides the workload of a task over six different dimensions; namely,

Mental Demand, Physical Demand, Temporal Demand, Effort, Performance, and

Frustration. The users are first asked to rate the task, across these dimensions on a

20 point scale (with larger value denoting higher workload). They are then required to

provide relative weights across these dimensions, by making pairwise choices between
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these different dimensions. A weighted average of the ratings provided across these

dimensions is then used as a measure of the workload.

For the actual study, we relied on a between-subject study design, wherein the

study participants are divided into two groups. All study participants were students

from ASU. One received abstract explanations and the other group was given con-

crete domain model information as explanations. As the task in question, we used

a variation of the Sokoban domain, that involves the agent pushing a box to a pre-

specified domain. Unlike the common versions of Sokoban, this variant involved the

robot needing to first turn on a switch before pushing the boxes. Each participant in

the study was allowed to play the game through a web-interface (which is shown in

Figure 9.5, along with a sample explanation). While they were told the actions they

can perform, they weren’t told what each of the action achieves or their preconditions.

Each player was allotted a total time of five minutes to complete the game. As the

users play the game and if they perform an invalid action, they were provided with

an explanation appropriate for their group.

For both groups, the current action sequence being executed was treated as the

foil and the explanation consisted of the following information; the state at which the

sequence failed, the specific action that failed, the expected set of preconditions, the

failed precondition, and lifted model information about relevant actions. While one

group of users were shown the information with respect to the concrete model, i.e.,

they were shown the full state, all the preconditions, all failed preconditions, and the

entire model of the task, the second group was shown the abstracted version of each of

the above-mentioned information. The level of abstraction for this group is identified

based on the foil failure. To make sure the explanation generation time is symmetric

between the groups, we avoided search to identify the best level of abstraction and

rather we simulated the failing foil in the most concrete model and randomly selected
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Figure 9.5: Screenshots from the User Interface Exposed to the End User. (A) The

Participant Is Shown the Current State of the Game, They Are Allowed to Control

the Agent via Their Keyboard and Whenever They Perform an Invalid Action, They

Are Shown a Possible Explanation. (B) and (C) Presents a Sample Explanation

Provided to Participants Who Were Exposed to Abstract Explanations. Here the

Current State Shown to the Participant Is Empty as None of the Facts Are True in

That State.

the predicate corresponding to one of the failing precondition to generate the abstract

models. While this may result in a more detailed model than required, as we will see,

even with this simple approach we did see a significant difference between the two

groups. We also carried over predicates from consecutive failures, so the users of the

second group saw increasingly more concrete models if they failed repeatedly (though

still more abstract compared to the first group).

In total, we collected responses from 28 participants, 14 of whom had access to

concrete explanation (henceforth referred to as Concrete-explanation group), and the

remaining 14 were provided with abstract explanation (i.e the Abstract-explanation
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Scale Concrete-Explanation Group Abstract-Explanation Group

Effort 1.595 1.252

Frustration 2.5 2.19

Mental Demand 2.9 1.414

Performance 1.186 1.705

Physical Demand 0.038 0.152

Temporal Demand 1.929 1.719

Table 9.3: The Weighted Average Workload Reported by the Participants of the User

Study Across the Individual Scales Used in NASA-TLX.

group). While the Concrete-explanation group on average took 200.857 secs to finish

the task, the abstraction group only took 163.5 seconds. In terms of the weighted

average workload for the Concrete-explanation group, we saw 10.147 and for the

Abstract-explanation group, we found it to be 8.433. The distribution across the

six scales are presented in Table 9.3. As seen from the table, in all but Performance

and Physical demand, people reported a higher workload for the concrete explanation

group. We see a particularly significant difference across the mental demand dimen-

sion, which was the main focus of the assumptions made by our work. Thus the results

from both the subjective workload study, and the performance of the user (measure

in terms of the time taken by the user to finish the task), conform to our original

hypothesis and we see that the use of abstractions provides a distinct advantage over

providing complete details.

9.5 Related Work

There is increasing interest within the automated planning community to solve the

problem of generating explanations for plans ((Fox et al., 2017; Langley et al., 2017)).
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Earlier works (Seegebarth et al., 2012; Bercher et al., 2014; Kambhampati, 1990) have

looked at explanations as a way of describing the effects of plans, while methods like

those presented by Sohrabi et al. (2011b) and Meadows et al. (2013) have looked

at plans itself as explanations for a set of observations. Another approach that has

received a lot of interest recently is to view explanations as a way of achieving model

reconciliation (Chakraborti et al., 2017). Such explanations are seen as a solution to a

model reconciliation problem (referred to as MRP) and this approach postulates that

the goal of an explanation is to update the model of the observer so they can correctly

evaluate the plans in question. The methods discussed in this Chapter can be seen as

performing a type of model-reconciliation, but one could also leverage the methods

discussed here to relax some of the assumptions made by model-reconciliation works

for certain conditions We discuss the relationship between model-reconciliation and

the methods studied in this Chapter in more detail in Section 9.6

As noted, our work is closely related to the well studied method of counter-

example guided refinement or CEGAR that was originally developed for Model check-

ing (Clarke et al., 2000). Many planning works have successfully used CEGAR based

methods to generate heuristics for plan generation (Seipp and Helmert, 2018, 2014).

The idea of foil resolution set for a given concretization is also closely related to the

process of identifying spurious counter examples employed by CEGAR based methods

(cf. (Haslum et al., 2012; Keyder et al., 2012; Steinmetz and Hoffmann, 2016)). One

major difference between our work and standard CEGAR based methods is the fact

that in our setting the abstract model producing the foil (or counter-example) is un-

known. Since we are exclusively dealing with spurious counter-examples we are also

not bound to testing our foils (in other words identifying faults or pivot states) in the

most concrete model (which could be quite expensive). Further, traditional CEGAR

methods are generally not as focused on identifying the cheapest refinements.
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Many abstraction schemes have been proposed for planning tasks (starting with

Sacerdoti (1974)), but in this chapter, we mainly focused on state abstractions and

based our formulation on previous methods like those discussed by Srivastava et al.

(2016) and Bäckström and Jonsson (2013). It would be interesting to see how we can

extend the approaches discussed in this chapter to handle temporal and procedural

abstractions (e.g., HLAs (Marthi et al., 2007)).

There exists a rich body of literature that has debated and discussed the role

of abstraction in Social sciences (cf. (Garfinkel, 1982; Hitchcock and Woodward,

2003) for arguments towards abstraction, while Bechlivanidis et al. (2017) argues for

adding more details provided the task constraints allow for it). Unlike these works

that study explanation in everyday scenarios, explanation in the context of AI sys-

tems have a markedly different flavor, in so far that the explainer may be representing

and reasoning about the task at levels of details that may be too hard for the users to

understand. Thus abstraction can be a powerful tool in identifying just the required

level of information to allow people to achieve their goals. This is an intuition being

leveraged by more and more works to help generate explanations or even decisions

that are easier to understand. For example, state abstractions have been leveraged

by Ferrer-Mestres et al. (2020) to generate simpler models that generate easier to un-

derstand policies, and Topin and Veloso (2019) used abstraction to simplify policies.

Even in the realm of machine learning explanations, abstractions have been consid-

ered as a way to generate multi-resolution explanations (Bayani and Mitsch, 2020).

The importance of adjusting the level of details for different users have also been

considered and argued by Martin et al. (2019), where they propose three levels of

explanations, namely, high-level, low-level, and co-created level explanations. While

high and low-level explanations focus on generating summaries and detailed descrip-

tions respectively, co-created explanations use the user interaction to determine the
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contents of the explanation. Our specific methods could be considered closely related

to the co-created explanation studied in the paper.

There have also been recent works that have looked at generating contrastive

explanations for planning. Some significant examples for these include the ones pre-

sented by Eifler et al. (2020b) and Cashmore et al. (2019). Both these cases treat

the cause of user’s confusion to be their limited computational capabilities and the

explanations tend to help them realize the consequences of following the foil without

worrying about model reconciliation.

A closely related but distinct form of explanations is the one where the explanan

(i.e. the information provided to the explainee) constitutes a counterfactual example

(Keane and Smyth, 2020). Such explanations are particularly popular in classification

settings, where when queried about an inexplicable classification, the system responds

with a counterfactual example where the desired decision may have been made. Note

that in such cases, the system needs to focus on generating counterfactual instances

that the user would find acceptable. Many recent works have looked at identifying

desirable properties for such counterfactual explanations (cf. (Keane and Smyth,

2020; Byrne, 2019)), and some of the prominent ones identified in the literature

include, making sure the counterfactual example is close enough to the decision-point

in question and the counterfactual is plausible, in terms of not only being a plausible

datapoint but also that it is actionable. Actionability can be particularly important

in domains like loan approval, wherein the counterfactual represents the changes the

user needs to make to achieve the desired outcomes. Note that in our method, it is

the user who is responsible for generating the counterfactual example and as such is

guaranteed to come up with foil they believed to be most likely or most useful. Thus

our focus has been on ensuring that the explanations generated in response meet the

desired properties discussed in the literature. As discussed above, our explanations
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do meet many of the important requirements discussed in the literature including

being selective and social.

9.6 HELM and Model Reconciliation Explanation

As mentioned earlier, the methods discussed in this case could be seen as a special

case of model reconciliation. Here the model updates are limited to model concretiza-

tion and the human’s model is an abstraction of the original model. Rather than

assuming that we are given an explicit human model, we assume that the human

model belongs in the set of possible models that corresponds to the various abstrac-

tions of the robot model. In this sense, this method is also comparable to the work

done on generating explanations for a set of possible models (Chapter 6), and in par-

ticular to the conformant explanations studied in that chapter. Though unlike the

methods discussed in Chapter 6, in this setting we can guarantee that the confor-

mant explanation is also minimal for the unknown human model (provided all model

updates and hence explanations are restricted to model concretizations over fluents).

Our use of minimal abstractions for explanations also allows the methods to handle

cases where the user questions arise due to a mismatch in the inferential capabilities

and not just a mismatch in the knowledge about the task. While the original model

reconciliation work focused on explanations that address all possible foils, our work

specifically tries to address foils raised by the user. This allows us to provide more

concise explanations and allows us to scale to larger problems as compared to the

original MRP approaches.

Another way to connect this work with model reconciliation is to leverage the

insights from Section 9.3.3, to show that the method described in this chapter can

also be used in the more general model-reconciliation setting. Section 9.3.3 shows

that for the class of planning problems studied in this chapter, even when the human
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model may not meet the assumption that it is, in fact, an abstraction of the original

robot model, we can still generate an explanation that refutes the given set of foil

using abstractions formed from the robot model. Provided we use a complete abstrac-

tion lattice which contains a single maximal node formed by projecting out all the

propositions. This means for explanatory queries related to just refuting alternate

plans, abstraction lattices give us a way to circumvent one of the most restrictive

assumptions made in model-reconciliation works, namely the need to know or learn

the human model. As discussed in Section 9.3.3, the explanations generated over

abstraction lattices will remain valid model-reconciliation explanations regardless of

how the human model may be different from the robot model (provided it is still of

the form described in Section 9.1 and doesn’t contain any fluents absent from the

robot model). Though compared to model-reconciliation techniques like those stud-

ied in Chapter 4, the methods discussed in this chapter could generate much larger

explanations. For one, the explanations here involve providing information about

all the uses of the explanatory fluents in the robot model, many of which the user

may already know. This approach can also be extended to generate explanations of

unsolvability and for partial foils of the type discussed in Chapter 10

9.6.1 Properties of Explanations

In Chapter 4, we used four properties to characterize the various types of expla-

nations that were introduced in the chapter. These properties were Completeness,

Monotonicity, Conciseness, and Computability. We too can use these properties to

describe the explanations we have looked at (with small updates to meet our specific

setting).

Any explanation generated by our methods will be complete and monotonic.

While Chapter 4 defines a complete explanation as one that guarantees optimality of
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the plan under question. For our scenario, a complete explanation can be redefined

as one that resolved all the given foils (|RΠF (Π′, E)| = |ΠF |). Chapter 4 considers an

explanation monotonic if no future explanation can invalidate it. In our setting, this

means that once a foil has been resolved by an explanation, no future explanation

(or model concretizations) can reintroduce it. Which is satisfied by any explanation

as concretization.

As for the remaining two properties (Conciseness and Computability), the defi-

nitions laid out in the original MRP chapter directly applies for our setting as well.

Similar to MRP explanations, computability and conciseness remains incompatible

properties for explanations in our case too. The explanations that are easier to com-

pute end up being neither concise nor easy to understand. For example, one simple

strategy to provide explaining a plan would be to provide enough details to the ex-

plainee that the human model completely converges to the robot model, but this

strategy could be extremely expensive and even unnecessary.

In addition to these properties, we also saw how the explanations discussed in

Chapter 4, also aligns with characteristics of useful explanations as identified by

works from social sciences (Miller, 2017a). Chief among them is generating contrastive

explanations, which remains the central thrust of the methods discussed in this work.

The other two properties usually cited by such sources are selectiveness and being

social. An explanation is considered selective if it chooses to focus only on the aspects

relevant to the current explanatory query. As such this is directly related to the

minimality of explanation and thus the methods discussed in this chapter can be

considered to be selective. On the other hand, an explanation is considered social if

it is tailored to the user’s background. Our method supports this property in two

distinct ways, one by explicitly trying to localize the user’s model on the abstraction

lattice, and by allowing the abstraction lattice itself to be tailored to reflect the
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preferences of the users.

9.7 Concluding Remarks

This chapter establishes the basic framework of HELM that will act as our primary

explanation generation method through the majority of part of the thesis. In addition,

to introducing the basic framework, our user study also establishes the primary result

that we will be leveraging through most of the following chapter, namely the fact that

use of state abstraction does reduce the cognitive burden placed on the human by the

explanations.

The explanatory approaches discussed in this chapter have mostly focused on

helping users resolve their confusion about foils, but it may also be possible that they

have questions about the original robot plan. For the robot plan πR = 〈a1, ..., an〉,

user could raise questions of the following types

1. Why perform action ai? (where ai ∈ πR)

2. How can action ai be performed when the precondition p is not met? (where

ai ∈ πR and p ∈ pre+(ai) or p ∈ pre−(ai) in the human model MR
h )

Question (1) captures the user’s concerns regarding the use of any particular action

in the plan, while question (2) captures their concerns regarding the validity of the

plan. Other questions, such as achievement of goals and questions about the overall

plan can be cast in terms of these more basic questions. For answering questions

of the first type, we can easily adapt approaches discussed in works like Seegebarth

et al. (2012) For a given action, these approaches try to find causal links that capture

the specific action’s contributions. We can leverage the hierarchy specified by the

abstraction lattice to identify causal links consisting of higher-level concepts.

For Question (2), it is possible to view such questions as another type of foil.
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While in earlier sections we tried to find abstract models where a particular foil can

be refuted, here we just need to find the level at which the specified preconditions

can be met. In the absence of disjunctive preconditions, we wouldn’t need to perform

a search to find such models, but rather choose the first abstract model where fluents

corresponding to the preconditions in question are introduced.

Finally, while we did mention that one could couple the model information with

additional plan failure information in the explanation, we didn’t delve into too much

detail. Such information corresponds to a larger class of information called explana-

tory witness, which we will cover in more detail in Chapter 12.
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Chapter 10

HANDLING PARTIAL FOILS AND EXPLAINING PROBLEM UNSOLVABILITY

In this chapter, we will revisit the HELM framework and relax one of the central

assumptions made in that framework, namely that the human would provide a set of

fully specified plans as foils and also extend it to support explaining the unsolvability

of a given planning problem.

We will start with explaining the unsolvability of the planning problem, and

present an extension of HELM, where we will try to find the most abstract model

(where abstraction models are generated through state abstractions) where the un-

solvability of the planning problem can be established. In addition to state abstrac-

tions, in this version of the framework we will also leverage an additional technique to

reduce the inferential burden placed on the user. Namely, help the user understand

the infeasibility of a given planning problem by pointing out unreachable but neces-

sary subgoals. Thus the user no longer has to reason about the unsolvability of the

true original problem, but can focus on the unsolvability of a smaller subproblem.

In this chapter, we will see how we can use the same framework for explaining

unsolvability to explain invalidity of partial foils. We can do this by leveraging the

basic intuition that establishing invalidity of partial foils is equivalent to establishing

unsolvability of planning problems with additional plan constraints. We will use a

very generous definition of partial foils and take it to mean any temporal preferences

on the type of solutions expected. In fact, we will go one step further and just

consider explaining the unsolvability of planning problems in the presence of plan

advice (Myers, 1996). By placing it in the context of planning problems with plan

advice, we can capture additional scenarios where the constraints don’t necessarily
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Figure 10.1: A Sample Abstraction Lattice. The Lattice Consists of Models Gen-

erated by Projecting out Rocks or Soil Samples. Dark Blobs Are Locations for Soil

Samples, Gray Objects Are Rocks, and the Goal Is Marked in Green. The Problem

Is Unsolvable in the Most Concrete Model but Solvable in Models Where Rocks Are

Projected Out.

correspond to foils raised by the user, but could be just solution preference the user

had, whose inclusion rendered the problem unsolvable.

10.1 Our Approach

Before we start discussing the technical details of our approach, let us look at a

possible explanatory scenario.

Example 2. Consider the following scenario where a rover is tasked with collecting a

rock sample and a soil sample from the region illustrated in Figure 10.2. The rover can

only traverse the region via the waypoints marked on the map and its maneuverability

is affected by the conditions of the terrain. The rover cannot easily traverse the region

between P3 and P4 without special precautions as the region is quite rocky. Suppose

a mission control operator is also keeping track of the rover’s plan but may not have

access to a map with the same level of fidelity or may have incomplete knowledge
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Figure 10.2: The Map for the Rover Mission Planning Problem. The Rover Is Re-

quired to Collect a Rock Sample and a Soil Sample and Then Return to the Original

Position P1. One of the Rock Samples Is Located in Rough Terrain (Gray) That Can

Not Be Traversed by the Rover. The Mission Control Operator Who Is Monitoring

the Plan Is Currently Unaware of This Detail.

of the rover’s capabilities. The rover reports to the mission controller that in fact

the task can not be solved. The mission control operator is confused by the rover’s

response and could even ask

“Why don’t you collect the rock sample from P4 and Soil sample from P7?”

Here if the rover wants to explain the reason as to why it couldn’t achieve the goal

a possible way would be to clarify that certain parts of the map are hard to traverse

(particularly the region around the rock sample) and because of this issue it can never

reach the location of the rock sample. Thus the explanation in this case consist of two

distinct parts, information about the problem (i.e traversability of certain paths) and

the required subgoal that can no longer be achieved in the light of this new information.

In the proceeding sections, we will layout our framework and discuss how we could

leverage it to generate such explanations.

The input to our approach thus includes an unsolvable problem represented by

the model MR =〈FR, AR,IR, GR〉 (in the above example this would correspond to
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the complete rover model) and an abstraction lattice LMR,P = 〈M,E, `〉, where M

represents the space of possible models that could be used to capture the human’s

understanding of the task (i.e by assuming the user may or may not be aware of the

fluents in the set P ⊆ FR). In Example 2, P could include fluents related traversability

of various paths or fluents related to various rover capabilities. Given this setting,

our method for identifying explanations, includes the following steps

• Identify the level of abstraction at which the explanation should be provided

(Section 10.1.1)

• Identify a sequence of necessary subgoals for the given problem that can be

reasoned about at the identified level of abstraction (Section 10.1.2)

• Identify the first unachievable subgoal in that sequence (Section 10.1.3)

Intuitively, one could understand the three steps mentioned above as follows. First,

identify the level of detail at which unsolvability of the problem needs to be discussed.

The higher the level of abstraction, the easier the user would find it to understand

and reason about the task, but the level of abstraction should be detailed enough

that the problem is actually unsolvable there. In most cases, this would mean finding

the highest level of abstraction where the problem is still unsolvable.

Now even if the system was to present the problem at this desired level of abstrac-

tion, the user may be unable to grasp the reason for unsolvability. Again, our method

involves helping the human in this process by pointing out a necessary subgoal (i.e.,

any valid solution to that problem must achieve the subgoal) that can’t be achieved

at the current abstraction level. Thus the second point relates to the challenge of

finding a sequence of subgoals (defined by state fluents present at the explanatory

level) for a given problem. In the third step, we try to identify the first subgoal in

the sequence that is actually unsolvable in the given level.
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Given our approach, the final explanatory message provided to the user would

include model information that brings their understanding of the task to the required

level and information on the specific subgoals (and previous ones that need to be

achieved first) that can no longer be achieved. In cases where the unachievable

subgoals are hard to understand formulas or large disjunctions, we can also use these

subgoals to produce exemplar plans in the more abstract models and illustrate their

failures alongside the unachievable subgoals.

10.1.1 Identifying the Minimal Level of Abstraction Required for Explanation

Following Chapter 9, we will assume that the human’s understanding of the task

could be approximated by a model MR
h = 〈FH , AH , IH , GH〉, such that, the model is

part of the abstraction lattice (MR @ MR
h and MR

h ∈ M). While the earlier work

is able to use alternative plan provided by the user to identify the human model, we

instead use the fact that the user expected the problem to be solvable to identify

MR
h , i.e., ∃π, π(IH) |=MR

h
GH .

We now need to abstract this human model to a level where the problem is un-

solvable (i.e the explanation level) by providing information about a certain subset of

fluents previously missing from the human model (i.e information on their truth values

in the initial and goal state, and how they affect various actions etc...). In the case of

Example 2, this would include information on whether various paths are traversable

and how the traversability of a path is a precondition for the robot to move across

it. We will refer to the set of fluents that the human needs to be informed about as

explanatory fluents (E) and for Example 2, it will be E = {can traverse(?x, ?y)}.

Definition 26. Given a human model MR
h , we define a set of propositions E to be

explanatory fluents if f−1
E (MR

h ) is unsolvable, i.e, |Πf−1
E (MR

h )| = 0.
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Unfortunately, this is not an operational definition as we do not have access to

MR
h . Instead, we know that MR

h must be part of the lattice, and thus there exists a

subset of the maximal elements of the lattice (denoted as Mabs) that is more abstract

than MR
h . In this section, we will show how the explanatory fluents for models in

this subset of Mabs would satisfy MR
h as well.

The first useful property to keep in mind is that ifM1 is more concrete thanM2

then the models obtained by concretizing each model with the same set of fluents

would maintain this relation (although they may get concretized to the same model),

i.e.,

Proposition 21. Given models M1, M2 and a set of fluents ε′, if M1 v M2, then

f−1
ε′ (M1) v f−1

ε′ (M2) .

Next, it can be shown that any given set of explanatory fluents for an abstract

model will be a valid explanatory fluent set for a more concrete model

Proposition 22. Given models M1, M2, if M1 vM2, then any explanation E for

M2 must also be an explanation for M1.

To see why this proposition is true, let’s start from the fact that f−1
E (M1) v

f−1
E (M2) and therefore Πf−1

E (M1) ⊆ Πf−1
E (M2). From the definition of explanation we

know that the concretization with respect to explanatory fluents would render the

problem unsolvable (i.e |Πf−1
E (M2)| = 0) and thus |Πf−1

E (M1))| must also be empty and

hence E is an explanation for M1.

Definition 27. Given an abstraction lattice L, let Mabs be its maximal elements.

Then the minimum abstraction set is defined as Mmin = {M|M ∈Mabs∧|ΠM| >

0}.

Note that for any model M1 ∈ Mmin, MR
h vM1, this means by Proposition 22,

any explanation that is valid for models in Mmin, should lead MR
h to a node where
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the problem is unsolvable. Now we can generate the explanation (even the optimal

one) by searching for a set of fluents that when introduced to the modelsM∈Mmin

will render the problem f−1
E (M) unsolvable. In this work, we will mostly consider the

use of uniform cost search to find the least costly set of explanatory fluent, where the

cost of each fluent reflects the cost of communicating information about a particular

fluent. In this case, the search state consists of sets of models (with Mmin being the

initial state), the actions consist of the various fluent concretizations, the edges of the

lattice define the successor functions and the goal test involves verifying whether the

problem is solvable in each possible model in the current state.

10.1.2 Generating Subgoals of a Given Problem

Note that it would be hard to identify non-trivial subgoals for the given problem in

the node at which the problem was found to be unsolvable (i.e f−1
E (Mmin)) since there

are no valid plans in that model. Fortunately, we can use models more abstract than

f−1
E (Mmin) to generate such subgoals. We will use planning landmarks (Hoffmann

et al., 2004) extracted from M, where |ΠM| > 0, as subgoals. Intuitively, state

landmarks (denoted as Λ = 〈Φ,≺〉) for a model M can be thought of as a partially

ordered set of formulas, where the formulas and the ordering need to be satisfied

by every plan that is valid in M. We will only be considering sound orderings (c.f

(Richter et al., 2008)) between landmarks, namely, (1) natural orderings (≺nat) -

φ ≺nat φ′, then φ must be true before φ′ is made true in every plan, (2) necessary

orderings (≺nec) - if φ ≺nec φ′ then φ must be true in the step before φ′ is made true

every time and (3) greedy necessary orderings (≺gnec) - if φ ≺gnec φ′ then φ must be

true in the step before φ′ is made true the first time. The landmark formulas may be

disjunctive, conjunctive or atomic landmarks.
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Our use of landmarks as the way to identify subgoals is further justified by the

fact that logically complete abstractions conserve landmarks. Formally

Proposition 23. Given two models M1 and M2, such that M1 v M2, let Λ1 =

〈Φ1,≺1〉 and Λ2 = 〈Φ2,≺2〉 be the landmarks of M1 and M2 respectively. Then for

all φ1
i , φ

1
j ∈ Φ1, such that φ1

i �1 φ
1
j (where ≺1 is some sound ordering), we have φ2

i

and φ2
j in Φ2, where φ1

i �2 φ
1
j , φ

1
i |= φ2

i and φ1
j |= φ2

j .

This is true because φ2
i ≺1 φ2

j holds over all the plans that are valid in M2,

and therefore must also hold over all plans in M1. Though in M1 these landmark

instances may be captured by more constrained formulas, and additionally M1 may

also contain landmarks that were absent from M2. Now if we can show that in a

particular model, a landmark generated from a more abstract model is unachievable

(or the ordering from the previous level is unachievable) then φ1
∗ becomes ⊥ (thereby

meeting the above requirement). Thereafter, for any model more concrete than M2,

the formula corresponding to that landmark must be ⊥. In other words, if for any

model a landmark is unachievable, then that landmark can’t be achieved in any

models more concrete than the current one.

So given the explanatory level, we can move one level up in the lattice and make

use of any of the well established landmark extraction methods developed for classical

planning problem to generate a sequence of potential subgoals for MR.

10.1.3 Identifying Unachievable Subgoals

Now we need to find the first subgoal from the sequence that can no longer be

achieved in the models obtained by applying the explanatory fluents ( f−1
E (Mmin))

which will then be presented to the user. For example, in the case of Figure 10.1, the
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unachievable subgoal would correspond to satisfying at rover(5, 4) (marked in red in

M4).

It is important to note that finding the first unachievable subgoal is not as simple as

testing the achievability of each subgoal at the abstraction level identified by methods

discussed in section 10.1.1. Instead, we need to make sure that each subgoal is

achievable while preserving the order of all the previous subgoals. To test this we

will introduce a new compilation that allows us to express the problem of testing

achievement of a landmark formula as a planning problem. Consider a planning model

M and the landmarks Λ = 〈Φ,≺〉 extracted from some model M′, where M @M′.

We will assume that the formulas in Φ are propositional logic formulas over the state

fluents and are expressed in DNF. Each φ ∈ Φ can be represented as a set of sets of

fluents (i.e, φ = {c1, ..., ck} and each ci set takes the form ci = {p1, ..pm}), where each

set of fluents represent a conjunction over those fluents. For testing the achievability

of any landmark φ ∈ Φ, we make an augmented model Mφ = 〈F φ, Aφ, Iφ, Gφ〉, such

that the landmark is achievable iff |ΠMφ
| > 0. The model Mφ can be defined as

follows: F φ = F ∪ Fmeta, where Fmeta contains new meta fluents for each possible

landmark φ′ ∈ Φ of the form

• achieved(φ′) keeps track of a landmark being achieved and never gets removed

• unset(φ′) Says that the landmark has not been achieved yet, usually set true in

the initial state unless the landmark is true in the initial state

• first time achieved(φ′) Says that the landmark has been achieved for the first

time. This fluent is set true in the initial state if the landmark is already true

there

The new action set Aφ, will contain a copy of each action in A. For each new action

corresponding to a ∈ A, we add the following new effects to track the achievement of
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each landmark

• for each φ′ ∈ Φ if the action has existing add effects for a subset of predicates

ĉj for a cj ∈ φ′, then we add the conditional effects cond1(φ′)→ {achieved(φ′)}

and cond2(φ′)→ {first time achieved(φ′)}, where

cond1(φ′) = cj \ ĉj ∪ {φ̂|φ̂ ∈ Φ ∧ (φ̂ ≺nec φ′)} ∪ {achieved(φ̂)|φ̂ ≺nat φ′} and

cond2(φ′) = cond1(φ′) ∪ {φ̂|φ̂ ≺gnec φ′} ∪ {unset(φ)}

• We add a conditional delete effect to every action of the form

first time achieved(φ′)→ (not(first time achieved(φ′)))

The new goal would be defined as Gφ = {first time achieved(φ)}.

This formulation allows us to test each landmark in the given sequence and find the

first one that can no longer be achieved. To ensure completeness, we will return the

final goal if all the previously extracted landmarks are still achievable in f−1
E (Mmin).

Now given an ordered set of landmarks, we can identify the first unsolvable landmark

by testing the solvability of the F φ for each landmark in the order they appear in the

sequence.

Since the above formulation is designed for DNF, we can generate compilation for

cases where the landmarks use either un-normalized formulas or CNF by converting

them first into DNF formulas.

10.2 Planning Problems with Plan Advice

Let us now discuss how we could extend the methods presented in earlier sections

to cases where the user provides plan advice. In such cases,the user imposes certain

restrictions on the kind of solution they expect, either as an alternative to the solution

the system may come up with on its own or as a guide to help the system come up

with solutions when it claims unsolvability.
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As pointed out in (Myers, 1996), such advice can be compiled into plan constraints

in the original problem. A number of approaches have been proposed to capture and

represent plan constraints (Bacchus and Kabanza, 2000; Nau et al., 2001; Kambham-

pati et al., 1995; Baier and McIlraith, 2006), and each of these representational choices

has its unique strengths and weaknesses. In general, we can see that these plan con-

straints as specify a partitioning of the space of all valid plans to either acceptable (i.e

it satisfies the constraints) or unacceptable. So we can define, constraints as follows

Definition 28. The partition specified by a constraint σ on a given set of plans

that is specified by a membership function σ : Π → [0, 1], where Π is the set of all

plans.

We will slightly abuse notation and for a given set of plans Π̂ we will use σ(Π′)

to denote {π|π ∈ Π̂ ∧ σ(π) = 1} (i.e the subset of Π′ that satisfies the constraint). If

we can assume some upper bound on the possible length of plans in σ(ΠM) (which

is guaranteed when we restrict our attention to non-redundant plans for standard

classical planning problems), then we can assert that there always exists a finite state

machine that captures the space of acceptable plans

Proposition 24. Given a constraint σ and a model M, there exists a finite state

automaton Fσ,M = 〈Σ,SFσ,M , S0, δ, E〉, where Σ is the input alphabet, SFσ,M defines

the FSA states, S0 is the initial state, δ is the transition function and E is the set of

accepting states, such that σ(ΠM) = L(Fσ,M) ∩ ΠM, where L(Fσ,M) is the set of

strings accepted by Fσ,M.

The existence of Fσ,M can be trivially shown by considering an FSA that has a

path for each unique plan in Fσ,M. We believe that this formulation is general enough

to capture almost all of the plan constraint specifications discussed in the planning

literature, including LTL based specifications, since for classical planning problems
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these formulas are better understood in terms of LTLf (De Giacomo and Vardi, 2015)

which can be compiled into a finite state automaton.

We can use Fσ,M to build a new model σ(M) such that a plan is valid in σ(M)

if and only if the plan is valid for M and satisfies the given specification σ, i.e.,

∀π, π ∈ Πσ(M) iff π ∈ σ(ΠM)

For M = 〈F,A, I,G〉, we can define the new model σ(M) = 〈Fσ, Aσ, Iσ, Gσ〉 as

follows

• Fσ = F ∪ {in-state-{S}|S ∈ SFσ,M}

• Aσ = A ∪Aδ

• Iσ = I ∪ {in-state-{S0}}

• Gσ = G ∪ {in-state-{S}|S ∈ E}

Aδ are the new meta actions responsible for simulating the transitions defined

by δ : SFσ,M × Σ → pow(SFσ,M). For example, if δ(S1, a) = {S1, S2}, where a

corresponds to an action in A, then we will have two new actions a1
S1,a

= 〈preca ∪

{in-state-{S1}}, addsa∪{in-state-{S2}}, delsa∪{in-state-{S1}}〉 and a2
S1,a

= 〈preca∪

{in-state-{S1}}, addsa, delsa}〉. In cases like LTL, the FSA state transitions may

be induced by the satisfaction of some formula, so the new meta action may have

preconditions corresponding to that formula, with no other effects but changing the

fluent corresponding to the state transition.

The above formulation merely points out that there always exists a way of gener-

ating σ(M) from the given specification σ andM. For many constraint types, there

may exist more efficient ways of generating models that satisfy the requirements of

σ(M).

Once we have access to σ(M), we should be able to use the methods discussed in

earlier sections to explain unsolvability of σ(M) and hence why the constraint isn’t
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Domain Name |P | Average Runtime (secs) Explanation Cost Cost of explaining MR

Blocksworld 4 8.141 11.6 30.2

Satellite 8 19.15 6 43.6

Depots 5 20.229 13 51

Rover 8 263.635 7.5 15.75

Storage 7 50.348 20 55.8

Over-Rover∗ 8 2047.360 29.8 92.6

Over-tpp∗ 8 1065.542 842.8 881.2

Bottleneck∗ 3 504.431 60.8 66.2

Table 10.1: Table Showing Runtime for Explanations Generated for Standard IPC

Domains. The Explanation Costs Capture the Number of Unique Model Updates

(Changes in Effects/Precondition Etc..) Corresponding to Each Explanation

feasible. To facilitate such explanation, we will build an abstraction lattice for the

constrained problems LσM,P such that P ∩ (F σ \ F ) = φ, i.e the abstraction lattice

only affects the fluents from the original problem and not the new ones introduced as

part of the compilation. In fact, we can induce such a lattice by considering the lattice

generated for the original problem and then replacing each node in the lattice with

the corresponding compiled problem, to see why this would induce a valid abstraction

lattice, consider the following property

Proposition 25. Given models M1, M2 and a constraint specification σ, if M1 v

M2, then σ(M1) v σ(M2).

To see why this is true, just assume that the reverse was true, that σ(M2) is

not a logically complete abstraction of σ(M1). This means that there are plans in

Πσ(M1) that are not part of Πσ(M2). From the definition of σ(M2), we know that

Πσ(M2) = ΠM2 ∩ L(Fσ). If there exist a π ∈ Πσ(M1), such that π 6∈ Πσ(M2), then

π 6∈ ΠM2 . Which means M1 6v M2, hence contradicting our assumptions.

Revisiting Example 2, the question asked by the user could be seen as an advice,
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Figure 10.3: The Graph Compares the Time Taken to Generate the Explanation for

Three of the Domains for Increasing Size of Lattices.

where the corresponding constraint covers all plans where the rover performs the

actions collect rock sample P4, collect soil sample P7, irrespective of the exact position

and order in which the actions appears in the plan. More generally, we could think

of this plan advice as being a special case of advice where the user wants to ensure

presence of certain actions in the plan with some partial ordering among them (eg:

“Why don’t you pickup block B and then C?”, “Make sure that you have cleared

Room1 before you move on to Room2 and Room3” etc..). Such advice could be

represented as partial plans (Kambhampati et al., 1995), which in general can be

captured as a partially ordered multiset of the form1 π̂ = 〈Â,6〉 , where Â is a multiset

over grounded actions and 6 defines ordering constraints over these grounded actions.

A plan π = 〈a1, ..., an〉 is said to be a candidate plan for the given partial plan π̂, if

there exists a mapping function µ : Â→ [1, |π|] that maps each action in a ∈ Â to a

position in the plan such that a = aµ(a) and if a < b for a, b ∈ Â, then µ(a) < µ(b).

Such partial plans can be fairly easily compiled into a classical planning model (such

that it satisfies σ(M)) by extending the compilation methods discussed by Ramırez

and Geffner (2010), without relying on an intermediate finite state machine.

1We are presenting a simplified definition of a partial plan. The full definition allows for the repre-

sentation of more complex constraints than mere ordering constraints, such as contiguity constraints

and interval protection constraints.
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The corresponding partial plan for the question specified above would be

π̂ = 〈{collect rock sample P4, collect soil sample P7}, 〉

Let us assume that in this case the observer could be unaware of certain domain

constraints such as the rover’s inability to traverse certain regions on the map the

fact that not all rovers are capable of collecting rock and soil samples or that they

are not always equipped to store these samples. In this case, possible user models

can be captured by a lattice build using the following fluents P = {(can traverse ?x

?y), (equipped for soil sample ?r), (equipped for rock sample ?r), (store of ?r)}. Now our

approach would identify the user need to be made aware of the fact that not all

regions of the map are equally traversable (i.e inform the user about can traverse ?x

?y) and how its a precondition for move action), furthermore given this property the

robot can no longer reach the waypoint 4 which is required to complete this task (i.e

the unreachable landmark is (at rover0 waypoint4)).

10.3 Evaluations

10.3.1 User Studies

Our first concern with evaluating explanations based on landmarks was to es-

tablish that they constitute meaningful explanations for naive users. As a simple

alternative to our explanations, we consider providing to the user a set of potential

solutions (generated from a higher level of abstraction) and their individual failures.

For the study, we recruited around 120 master turkers from Amazon’s Mechanical

Turk and tested the following hypotheses

• H1 - Users prefer concise explanations over ones that enumerate a set of possible

candidates for a given piece of plan advice

• H2 - Users prefer concise explanations that contain information about unachiev-
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able landmarks over ones that only show the failure of a single exemplary plan

For the hypotheses, we presented the study participants with a sample dialogue be-

tween two people over a logistics plan to move a package from one location to another.

The dialogue included a person (named Bob) presenting a plan to another (named

Alice), and Alice asks for an alternative possibility (i.e specifies a constraint on the

solution). Now the challenge for Bob is to explain why the constrained problem is

unsolvable. For example, in one example Bob presents a rather convoluted plan that

involves the package being transferred through multiple trucks to a train and then to

the final destination. This leads to Alice asking the package to be delivered via an

airplane.

For H1, in addition to some model information that Bob was unaware of, the

potential explanations included either (a) the information on the unachievable land-

mark, (b) landmark information with the failure details of a specific exemplary plan

or (c) a set of plans that satisfy the constraints and their corresponding failures. For

the earlier example this meant Bob explains to Alice the limited availability of Truck

fuel and (a) the impossibility of getting the package to the airport or (b) the the im-

possibility of getting the package to the airport and a specific plan (eg: truck1 picks

up package moves to location two then to three ...) along with its point of failure (eg:

truck1 runs out of fuel when it reaches location three) or (c) three example plans in-

volving various trucks trying to get the package to the airport and their specific points

of failures (each of which fails at different steps but before reaching the airport).

For this study, we used 45 participants and each participant was assigned one of

three possible maps for each hypothesis and was paid $1.25 for 10 mins. We used a

control question to filter participant responses, so as to ensure their quality. Out of

the 39 remaining responses, we found 94.8% of users chose to select the more concise

explanation (i.e (a) or (b)), and 51.28% of the users chose explanations that involved
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just landmarks.

For H2, we used 75 participants and presented each participant with explanations

that include (a) just landmark information, (b) landmark information with failure

details of an exemplary plan and (c) just the exemplary plan failure. Here participants

were paid $1 for 10 mins for H2 as the explanatory options were much simpler. After

filtering using the control question, we found that out of 60 valid entries 75.4% of

participants preferred explanations that included landmark information ((a) or (b))

and 44.2% wanted both landmarks and exemplary plan (i.e (b)). The supplementary

file at http://bit.ly/2HQ5sTv contains more details on the study setup.

10.3.2 Empirical Studies

In this section, we will present the results of an empirical evaluation of the compu-

tational characteristics of our approach. One big concern with the methods discussed

in this work is the fact that they involve solving multiple planning problems. Thus

we were interested in identifying the runtime for generating explanations on a set of

standard planning benchmarks.

To evaluate our methods, we considered eight planning domains and chose five

problem instances for each of the domains. For each domain, we used a subset of

the domain predicates to generate the abstraction lattice (i.e we set the subset as

the set of fluents P used to define the lattice). The first five domains and their

problem instances consisted of standard IPC domains and problem instances used in

previous IPC competitions (International Planning Competition, 2011). Each prob-

lem instance was made unsolvable by including plan constraints that avoid a specific

landmark of the original problem. The constraints were coded using domain control

programs (Baier et al., 2007) of the form

while ¬φ ∧ ¬(goal completed)
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do any

done

Where φ is the landmark formula and (goal completed) is the goal fluent (gener-

ated by a new goal action whose preconditions are the original goals of the problem).

The constraints ensure that any valid plan must avoid the landmark φ and thereby

rendering it unsolvable. The next three domains were selected from the set used

for the 2016 unsolvability competition (Unsolvability International Planning Compe-

tition, 2016) (these domains are marked with an asterix in the results table). All

instances were run with a timeout of 100 minutes (all problems were solvable under

this time limit) and all landmarks were generated using the fast-downward implemen-

tation of the method discussed by Keyder et al. (2010) (where we set the subset sizes

to one for the first five domains and to two for the rest).

Table 10.1 presents the results of our tests on these domains. It shows the number

of fluents used to generate the lattice (|P |), the average runtime, the cost of the

generated explanations and the cost of presenting the most concrete model to the

user. For each scenario, we created a complete lattice for all the fluents considered

for abstraction (i.e |M| = 2|P |). The cost of the explanation captures the amount of

information to be provided to the user as part of the explanation. This could include

information regarding the various explanatory fluents and is here captured roughly

by the number of places within the domain definition where these fluents appear. The

cost also reflects the inferential overhead demanded from the user (since providing

more information translates to the user needing to understand the domain at a much

more concrete level).

For a sample explanation, consider the overconstrained rover domain, where the

rovers’ actions are limited by their energy levels and the energy of the rover isn’t

enough to finish the task. In one of the instances where the rover energy level is at 33
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and the original problem had a goal consisting of eight propositions (each referring

to the need for communicating a particular soil sample, rock sample or sending an

image for different objectives), our approach was able to identify that the user needs

to understand fluents related to energy ((energy ?x ?y) and (energycost ?x ?y ?z)) and

identified two subgoals out of the eight that it could not achieve.

Figure 10.3 presents the variations in average runtime for three of the domains as

the size of the lattice were increased (the X-axis represents the number of fluents that

were used to build the lattice and Y the runtime in seconds). Note that, in general,

the runtime increases as the lattice size increase due to the increase in the search

space, but in all three domains there are points where the runtime decrease when the

lattice size increases. This is expected since with an increase in the size of lattice, the

planning problems whose unsolvability are being tested becomes simpler.

10.4 Related Work

As discussed earlier, our methods for identifying the level of explanations are

based on the expertise level modeling approaches introduced in Chapter 9. These

two works are quite closely connected and in fact, the contrastive explanations of the

type studied in the earlier chapter, where the user presents alternative plans (i.e the

foils for the explanations) that are then refuted by the system, is a special case of

our approach for handling problems with plan advice. The problems studied in that

earlier chapter can be thought of as capturing cases where the advice only allows for

a single plan. Also, one could argue that people would be more comfortable giving

advices as foils rather than full plans. Part of our explanations also try to reveal to

the user information about the current task that was previously unknown to them.

Thus our methods could also be understood as an example of explanation as model-

reconciliation (Chakraborti et al., 2017). Since our methods use abstractions, our
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approach doesn’t make too many demands on the inferential capabilities of the user

and hence can be applied to much larger and more complex domains.

Another closely related direction has been the work done on explaining unsynthe-

sizability of hybrid controllers for a given set of high-level task specifications (Raman

and Kress-Gazit, 2013). The work tries to identify the subformulas of the given spec-

ification that lead to the unsynthesizability. This particular approach is specific to

the planning framework detailed by Finucane et al. (2010) and the objective of the

work parallels the goals of work like those presented by Göbelbecker et al. (2010).

Outside of explanation generation, the work done in the model checking commu-

nity is closely related to our current problem (Grumberg and Veith, 2008). In fact, the

hierarchical approach to identifying a model that can invalidate the given foil speci-

fication, can be seen as a special case of the CEGAR based methods studied in the

model-checking community (Clarke et al., 2000). Most work in this field focuses on

developing methods for identifying whether a given program meets some specifications

and failures to meet specification are generally communicated via counterexamples.

Another related problem is that of identifying whether a given problem is unsolv-

able. In our setting, we assume that the system is capable of correctly identifying

whether a given problem is unsolvable or not and in general this can be a time consum-

ing process. Thankfully the problem of efficiently identifying whether a given planning

problem is unsolvable is an active research area (cf. (Steinmetz and Hoffmann, 2017;

Kolobov et al., 2010)) and solutions to this problem can be easily leveraged by our

approach to improve the overall efficiency of the system.

10.5 Concluding Remarks

In this chapter, we saw how the basic HELM framework laid out in Chapter

9 to support explaining the unsolvability of a planning problem and by extension
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support cases where the user may only provide a partial specification of the foil, i.e,

the foil may be best represented as a loose constraint over the planning problem.

Another important addition the chapter makes is the use of subgoals as a way to

further simplify the model information being used in the explanation. The user

studies presented in this chapter also show that the study participants identified this

to be useful information. In the next chapter, we will take this version of the HELM

framework as the starting point and see how it could be applied to more general

planning formulations.
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Chapter 11

HANDLING NON-DETERMINISM AND D3WA+ DEBUGGING SYSTEM

Through the previous chapters, we saw the introduction of an explanation generation

framework called HELM, which uses state abstraction to provide explanations to the

end-user. Furthermore, the previous chapter saw the extension of this framework to

support scenarios where the foil set may only be implicitly or partially specified. We

also saw how the framework can also be used to support explanations of problem

unsolvability. However, one constant through both these chapters was our focus

on deterministic planning problems. In this chapter, we will take our first step to

demonstrate how this approach is applicable beyond that specific problem class and

apply it in the context of non-deterministic problems. In particular, we will consider

fully observable non-deterministic problems (i.e. FOND), where each action could

have a set of mutually exclusive effects, and the execution of an action could result

in one of those effects being applied non-deterministically.

Once we introduce the basic extension of our explanation, we will demonstrate the

utility of this extension by applying it in the context of a tool for debugging domain

model specifications. In particular, we will consider the tool D3WA (Muise et al., 2019a)

that was developed to allow dialogue designers for automated conversational agents

to specify the agent behavior declaratively. Specifically, they encode the potential

conversations the agent can have in the form of a FOND model. The debugging tool

(called D3WA+) was introduced to allow users to debug the model specification when

the agent behavior doesn’t match what the domain designer had in mind. So another

contribution of this chapter would be to formalize the XAIP problem for the model

acquisition scenario and illustrate the salient challenges involved on a tool for the
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design of goal-directed conversational agents.

11.1 Non-deterministic Models and Explanations

In this section, we will discuss how we extend the abstraction-based explanation,

in particular the one designed to support partial foils introduced Chapter 10, to

support non-deterministic models.

11.1.1 Background

We will be relying on the model definition laid out in Section 2.2, where a model is

captured by a tuple of the formM = 〈F,A, I,G〉. For the purposes of the discussion,

we will focus on model where preconditions are limited to positive preconditions. This

means an action a in the model is defined as: a = 〈pre+(a),E(a)〉 where pre+(a) ⊆ F

is the set of preconditions that needs to be true for the action a to be executable

and E(a) = {oa1, . . . , oak} is the set of k possible outcomes for action a. Each outcome

is further defined as the tuple oi(a) = 〈add i(a), del i(a)〉, where add i(a) and del i(a)

are the adds and deletes corresponding to the outcome. Through this discussion, we

will focus primarily on weak solutions. We will represent the space of goal achieving

behaviors by the notations Π(M). In the case of non-deterministic models Π(M),

would correspond to all possible traces from initial state to a goal state and not

necessarily weak policies. However, it is worth noting that when we apply the notation

in the context of deterministic planning problems (as we will do later), this will

correspond to all the possible plans.

Also to support partial foils, we will use the model transformation function Obs :

M× {π} 7→ M′ that receives a model and a (partial) sequence of actions (equiva-

lent to a set of possible plans) and produces a compiled model where this sequence

must be preserved, i.e. {π} ⊆ Π(M′). In the preservation technique used here for
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deterministic models, we allow for partial observation of non-determinism as well,

in addition to the usual partial plans, in order to account for the specific needs of

the tool under study. This means that an action may be specified in a plan but its

outcome may be left unspecified.

11.1.2 Extending HELM to Support Non-Deterministic Models

To map the previous explanation framework to this setting, the first step would

be to define an abstraction function. In a parallel to Theorem 4, we will show that

syntactic projection of FOND description will also result in logically complete abstrac-

tions. In other words, the model derived from the transformation will result in model

that will allow for more behaviors.

Definition 29. A model abstraction M′ = Abs(M,P) is logically complete if there

exists a surjective mapping from states in M to M′ and Π(M) ⊆ Π(M′).

Now let us consider the syntactic projection function Absp :M× 2F 7→ M′.

Definition 30. Given a non-deterministc modelM and a set of fluents P: Absp(M,P) =

〈F \ P , Â, I \ P ,G \ P〉 where ∀a ∈ A,∃â ∈ Â such that: pre+(â) = pre+(â) \ P and

every outcome becomes oi(â) = 〈add i(a) \ P , del i(a) \ P〉.

Consider a transition 〈Si, ai, Si+1〉 that is valid for tM, we can see that, Si ⊆

pre+(ai) and there must exist an outcome oaik for ai such that Si+1 = (Si \ delk(âi) ∪

addk(âi)). Then there must exist a corresponding transition 〈Si \P , âi, Si+1 \P〉 that

is valid for Absp(M,P) with an outcome oâik . Thus the model is guaranteed to be

logically complete abstraction.

With these tools in place, we can generate explanations described in earlier sec-

tions by doing a search over the space of abstract non-deterministic models and find

the most abstract model that is still unsolvable. Though it would be easier if we
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can just focus on settings where we are testing solvability of classical planning model

and extracting subgoals from these simpler models. We will do this by focusing on

determinizations of the original non-deterministic model.

Determinization is the process of turning a non-deterministic model M into a

deterministic one Det(M) – e.g. an “all-outcomes” determinization scheme (Yoon

et al., 2007) transforms an action a : S → {Si} into a set of actions ∀i ai : S → Si

so that all the outcomes of an action with non-deterministic effects can be realized

in the determinised model. With the fairness assumption (Cimatti et al., 2003), a

solution to Det(M) is also a valid behavior for M, i.e. Π(Det(M)) = Π(M).

All of our explanation generation procedures will be performed on the all outcome

determinization of the original non-deterministic model. We will motivate this choice,

by showing that the abstraction of a determinised model is the determinization of the

abstracted non-deterministic model:

Proposition 26. Given a non-deterministic model M and a set of fluents P:

Det(Absp(M,P)) = Absp(Det(M),P)

.

The determinised model will contain an action for each possible outcome, i.e.

∀oai , Det(M) contains an action aoi = 〈preca, addsoai , delsoai 〉. So the projection of

this determinised action will be 〈preca \P , addsoai \P , delsoai \P〉, and you would get

the same action if you were determinising based on projected oai .

Subgoals and Landmarks In addition to presenting the abstractions, we will

be following the conventions set by Chapter 10 by also presenting the user with a

subgoal that is necessary for achieving the goal in the current model but can not be

achieved. We will again use landmarks (Hoffmann et al., 2004) for identifying such

subgoals.
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The earlier chapter constructs landmarks from models that are more abstract

than the minimally unsolvable model but this can lead to less informed subgoals as it

may not be considering many of the state factors. We will instead extract landmarks

directly from the the minimally unsolvable model using the following proposition:

Proposition 27. If M is unsolvable, and Abs(M,P) is solvable while Abs(M,P ∪

{f}) is not, then either the delete relaxation of Abs(M,P ∪ {f}) is solvable or there

must be an unmet landmark corresponding to f .

This follows from the fact that in the abstraction scheme we follow, when we

consider the delete relaxation of Abs(M,P ∪ {f}) over that of Abs(M,P), the only

possible differences can be that f may be part of preconditions and adds for an

action. If this addition makes the delete relaxation unsolvable then that means that

all relaxed plans for Abs(M,P) contained actions that required f as a precondition.

The problem becomes a bit more involved when we allow for negative precondition

as we need to test whether the possible landmark is f or ¬f .

Given this proposition, we first test if delete relaxation of Abs(M,P) is solvable

so we can extract landmarks from it similar to Chapter 10. Otherwise we test if

addition of f in initial state makes the delete relaxation of Abs(M,P ∪{f}) solvable.

If it does, then the landmark is f , else it is ¬f . While this can lead to more informed

landmarks, for cases where the delete relaxation is unsolvable, we would not be able

to leverage the ordering of the landmarks to find subgoals appearing earlier in the

sequence.

11.2 D3WA+ System and XAIP for Model Acquisition

With the basic framework for explanation generation in place, we will look at

the application of this method within a tool for debugging domain models. Before
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delving deeper into the tool itself, we will take a quick look at the original domain

specification tool D3WA which is extended by the debugging tool.

11.2.1 A Brief History of D3WA

At the core of the declarative specification proposed by Muise et al. (2019a) is

an agent-centric view of the world – the dialogue designer specifies “capabilities”

that are available to an agent and lets a non-deterministic planner generate (Muise

et al., 2012) and execute (Muise et al., 2019b) the composed dialogue plan in the

background. We demonstrated in ICAPS 2019 (Chakraborti et al., 2019d) how this

can lead to an exponential scale-up from the size of the specification to the complexity

of the composed agent, as an illustration of the exciting fusion of planning based

technologies (especially non-deterministic planning) and the design of dialogue agents.

This is especially useful in the design of certain kinds of conversations, especially ones

with an underlying process – e.g. a business process (Chakraborti and Khazaeni,

2020) – that drives the conversation. However, it turns out that while this provides

a powerful tool for an experienced domain writer with expertise in planning, and

declarative programming in general, for the uninitiated it presents too steep a learning

curve. Since designers no longer explicitly compose the dialogue plan, they lose control

over the composed agent if they do not grasp the imperative consequences of their

declarative specification.

In this chapter, we thus build on this work with the aim of making the core domain

authoring engine more amenable to dialogue designers who are usually outside the

planning community and do not readily subscribe to the declarative mental model.

In order to do so, we apply the explanation framework laid out in Section 11.1 to

bridge the gap with the end user. Before we get to the specific contributions of the

debugging tool, we start with a brief introduction to D3WA so as to make the rest of
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Figure 11.1: Illustration of the Salient Aspects of Declarative Design of Conversational

Agents on the D3WA Interface, Reproduced with Permission from Muise et al. (2019a).

the presentation self-contained to the extent possible.

Actions, Outcomes and Context Variables

The original system D3WA is illustrated in Figure 11.1. The interface surfaces two

key elements to the dialogue designer: 1) context variables that model the agent’s

world; and 2) actions that are defined in terms of these variables. For a dialogue

agent, these actions model the different capabilities available to it in terms of dialogue

actions towards the end user, or internal system actions such as API calls or logical
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inferences.

Each action (Figure 11.1) has a set of NEEDs (or preconditions) and a set of

OUTCOMEs which house a set of non-deterministic UPDATEs to a variable. The

outcomes within an action are mutually exclusive and model how the user may re-

spond or, in general, how the world may evolve in response to any action done by the

agent. For example:

1. Dialogue Action: If the agent wants to ask the user their name, the correspond-

ing dialogue action would have one outcome when the user responds with their

name, and another one that models a digression in the conversation.

2. System Action: In order to make an API call, the agent would require as NEEDs,

access to the link and the relevant payload. Two possible outcomes of the call

may be a successful response (in which case the agent updates the values of the

relevant variables it was looking for) or a 404 error (in which case the agent

gets nothing).

A non-deterministic planner receives this specification, plans for all possible out-

comes, and generates the resulting dialogue plans in Figure 11.1. This offline approach

has two advantages: it allows the dialogue designer to inspect and sign off on the agent

to be deployed, while also being able to support complex dialogues without having

to plan and replan in real time. For more details on D3WA, and on how this specifica-

tion is compiled to a planning problem in the background, we refer the reader to the

discussion by Muise et al. (2019a).

11.2.2 D3WA + XAIP → D3WA+

The “explainable” version of D3WA – henceforth referred to as D3WA+ – developed

in this chapter provides a suite of debugging tools on top of the existing core model

221



acquisition framework described above. This is aimed to make the dialogue designer

more self-sufficient when they are faced with modeling errors. Specifically, based

on difficulties observed during preliminary internal testing, we tackle two core issues

faced frequently by dialogue designers grappling with the declarative paradigm:

• Specification cannot be solved by the planner. This is the case when the

graph in Figure 11.3d does not appear at all, and the dialogue designer is left

with an inscrutable “no solution found” message and nothing else to work with.

Our goal here is to surface features from the current specification back to the

designer so that they can fix identify the root cause of the unsolvability.

• Solution does not match expectations. Here, the problem is solvable but

the solution does not match the designer’s expectations – i.e. the graph in

Figure 11.3d looks nothing like what they were aiming for. The goal here for

us is to be able to respond to questions from the designer such as Why is

this a solution? and Why is this not a solution?, so that they can modify the

specification accordingly until they are satisfied with the outcome.

Some of these questions might look familiar with the line of investigation by

Smith (2012); Fox et al. (2017); Cashmore et al. (2019) and the methods covered in

the previous chapters. However, the setting here involves the domain designer and

not the end user. Thus the suite of challenges not only include the unsolvability

question, not addressed in those works, but also the explanatory dialogue here is

geared towards the model acquisition task rather than the exploration of the decision

making process.
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11.2.3 The XMAS Problem

Explanations in the context of the model acquisition task provide a unique twist

to the model reconciliation framework laid out in Chapter 4. There, the task is to

compute, given the agent model, the mental model, and a plan to explain, a set of

updates that when applied to the mental model would render the given plan optimal

(and hence without any foil) in the updated mental model.

Here also, we have two models – the one currently specified by the domain writer

or the revealed model, and the one that they wanted to specify or the mental model.

Furthermore, similar to the case of model reconciliation process, here too we have

model differences – the revealed model and the mental model do not match due to

mistakes made by the domain writer. However, unlike in the case of explanations in

the model reconciliation framework, the target here is for the explainable AI system to

transform the revealed model to the mental model, rather than updating the mental

model to agree with the revealed model as focused on traditionally in the model

reconciliation framework.

This is an iterative process with the human (in this case, the domain writer) firmly

in the loop. This is because, unlike in standard closed world model estimation tasks

where the features of the model are known, and a transition function between domain

models can be specified (Bryce et al., 2016; Keren et al., 2017), here the problem is

open ended as the domain writer gradually builds their agent model. Thus, the model

acquisition task is strictly not one of estimation of the mental model.1

An Explainable Model Acquisition Setting XMAS is defined by the tuple Ψ =

1It is for this reason that we, while pointing out problems with the current domain (and foils

raised by the domain writer), do not suggest possible fixes. This is something that the domain

expert is in charge of authoring. At the end of the chapter, we will point to some future work in

this direction.
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〈M,MH〉 whereM is the revealed model andMH is the mental model of the domain

writer.

Since the eventual goal of writing a domain is to enable a desired set of behaviors,

and there may be many ways to specify the same agent behavior, we condition the

end goal of an XMAS in terms of the space of plans afforded by the agent model that

is being specified. The solution to Ψ is a sequence of model updates (as described in

Chapter 4) D = 〈E1, E2, . . . En〉 such that:

Π(M+
∑
i

Ei) = Π(MH)

This means that at the end of the model acquisition process the domain writer

has successfully captured the space of behaviors of the agent they were trying to

model. In contrast to the model reconciliation process, for the model acquisition

task, these updates are, of course, generated by the domain writer. From the XAIP

perspective, the task of the planner here is to empower the domain writer to come

up with the most efficient D – e.g. min
∑

i |Ei| to reduce the overall complexity of

the model acquisition process or just min |D| to reduce the number of steps to reach

the final model. The evaluation of the entire process requires research on the UX of

abstractions, and is out of scope of this chapter.

Instead, in the following discussion, we tackle key difficulties faced by domain

writers for individual interactions during this process (as experienced in preliminary

internal tests of D3WA). The focus of the proposed solutions here is to address the

computational limitations of the domain writer using XAIP techniques like domain

abstractions that have been shown to be useful in user studies (Chapter 10) as a

vehicle for explanations in complex domains.
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11.2.4 Q1. Why Is There No Solution?

This is the case when: Π(MH) 6= Π(M) = ∅, i.e. the domain writer mistakenly

thinks that they have a solvable model. As we mentioned before, for a model acqui-

sition task, it is not enough to surface a cause for unsolvability but one must also

make sure that the domain writer gets actionable information in order to remedy the

situation. The directive from the planner thus has the following components:

1. Minimal Unsolvability We present to the domain writer the smallest possi-

ble abstraction Abs(Det(M),P) such that this model too does not have any

solution.

Find: P

s.t. Π(Abs(Det(M),P ∪G)) = ∅

and min |P|

Show: Abs(Det(M),P ∪G)

By the properties of the abstraction used, Π(M) 6= ∅ only if Π(Abs(Det(M))) 6=

∅. Thus the domain writer can fix the root cause of unsolvability in this simpler

domain first. We will later show in the empirical evaluations how this approach

can significantly reduce the size of the specification that the domain writer

has to inspect in order to fix an unsolvable model. We include the goal in all

abstractions – this fluent is not directly accessible to the designer.2

2This does not mean that the designer cannot specify a goal. They can specify any starting

condition and point out which of the outcomes in one or more actions ends the conversation. The

latter is then compiled internally to a single goal achieving condition. Thus the framework is quite

generic for modeling any goal-directed process and not necessarily tied to any specific initial condition

or goal state. For more details, please refer to the discussion by Muise et al. (2019a).
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2. Maximal Solvability & Exemplary Plan Failure While the previous com-

ponent of the explanation provides a simpler version of the model for the user

to debug, it does not illustrate failures of any potential solutions to motivate

fixes that the designer might attempt. The following complements it with an

illustrative failure in the current model of a plan generated from the maximally

solvable abstraction, while letting the domain writer continue fixing the issue on

the minimally unsolvable one.3 As we will see in Chapter 12 this is an example

of an explanatory witness.

Find: P

s.t. Π(Abs(Det(M),P ∪G)) = {π} 6= ∅

and max |P|

Show: Π(Obs(M, {π})) = ∅.

The point here is to find the most complete simplification of the model where

a solution exists and illustrate – for example, using VAL (Howey et al., 2004) –

to the user why that solution does not apply to M. The domain writer could

also use this sample plan to explore where exactly a possible solution becomes

invalid in the current specification, or even use it as a starting point to create

more complex foils to investigate further.4

3Note that we cannot generate a plan from a minimal unsolvable abstractions since there are

no solutions there. One possibility would be to choose a model more abstract than the minimally

unsolvable one. Unfortunately, these model would ignore most model features and provide no useful

plan for the user to debug.
4To improve the efficiency of the search, we will restrict the search for abstraction set over subsets

of (F \Pmin)∪G (where Pmin is minimum abstracting set). Since the abstraction techniques followed

here guarantees that abstractions formed from supersets of Pmin∪G will not result in solvable model.
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3. In addition to presenting the abstractions and an exemplary plan failure, we

can further help the domain writer debug the problem by presenting them with

an unachievable subgoal that corresponds to a landmark. We will be using the

approach discussed in Section 11.1 to extract the landmarks.

11.2.5 Q2. Why Is This Not a Solution?

This is the case when (for a set of plans {π} presented by the domain writer):

{π} ⊆ Π(MH) but {π} 6⊆ Π(M). This is really a special case of Q1 – we perform

the following transformation to solve this:

Set: M← Obs(M, {π})

If: Π(Obs(M)) 6= ∅ (the compilation is solvable) then demonstrate to the user that

6 ∃π ∈ Π(Obs(M, {π})) such that cost(π) > cost(πi) ∀πi ∈ {π} – this means that

the foil is not better than anything else already in the solution. At this point,

the user can ask Q3.

Else: Follow Q1 with M.

Note that we cannot run VAL directly on the foil since: 1) It is very unlikely that

the domain writer will provide full foils – this is largely due to the effort required in

doing so but also uniquely infeasible for the current setting of dialogue design since

internal system actions such as web calls and logical inferences are not part of logs

that are used to stress test the design of the agent; and 2) in the case of a partial foil,

Obs(M) may not have a solution to run VAL with.

Moreover if Pmin is the only subset of fluents leading to the unsolvability then (F \Pmin)∪G should

automatically be a solvable domain. So we will start our search from (F \ Pmin) ∪ G and will look

at systematically relaxing the model until we get a solvable one. We evaluate this approximation

against the exact approach in our evaluations.
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Figure 11.2: Snapshot of D3WA+ Illustrating Model Abstraction in Response to Un-

solvability. Since the Model Has No Solution, There Is No Generated Dialogue Plan

and the Canvas for Visualization Is Empty – Our User Story Starts with a White

XMAS. The Minimal Unsolvable Abstraction Is Presented to the Designer so That

They Can Devise a Fix in the Simpler Model First, Before Translating That to the

Full Specification. Note How Some Variables in the Domain Have Disappeared in the

Minimal Abstraction, in Comparison to Figure 11.1. The Designer Can Toggle Back

and Forth Between the Full and Projected Models Using the Red Button, until They

Are Able to Devise a Fix. The Highlight Feature Communicates to the User Which

of the Projected Fluents (Orange Hover) Are Associated with Which of the Actions

(Blue Highlight).

11.2.6 Q3. Why Is This a Solution?

This is the case when (for a set of plans {π} presented by the domain writer):

{π} 6⊆ Π(MH) but {π} ⊆ Π(M). Here, the domain designer is surprised that a

solution they did not expect is part of Π(M). The provenance of actions along such a

solution of M can be communicated to the designer through the visualization of the

necessary causal links as done, for example, in (Seegebarth et al., 2012; Chakraborti

et al., 2019a; Bercher et al., 2014). We do not repeat this line of inquiry here.
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11.3 Illustrations on D3WA+

We will now illustrate each of the use cases covered above on our tool D3WA+.

In the context of the design of dialogue agents using planning, each “solution” is a

potential conversation path allowed by the agent design. Hence, the model acquisition

process is one of the dialogue designer ensuring which conversations are allowed and

which are not.

Demonstration

While we attempt to illustrate as much of the use cases as possible in the limited

space available here, please refer to the video here: http://ibm.biz/d3wa-xaip for

a more detailed walkthrough of all the use cases discussed in the chapter. (Duration:

7min 55sec excluding explanation generation time reported in Table 11.1)

Car Inspection Bot

For purposes of illustration, we consider the design of a conversational agent tasked

with helping in the inspection of a car. This domain is adapted from (Muise et al.,

2019a) as a typical demonstration of the design of conversational agents using auto-

mated planning techniques. The final dialogue plan, as seen in Figure 11.3d, has 63

nodes and 272 edges and is thus quite comfortably out of scope for the state of the

art in dialogue design. The declarative specification as seen in Figure 11.1, on the

other hand, has just 8 variables and 7 non-deterministic actions. Let us consider the

following dialogue in this domain:

Bot: Ready to record.

User: Break pads pass.

Bot: Ok, break pads pass.
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User: What’s next? <-- initiative switch!

Bot: Check the spark plugs.

User: What are the options.

...

Bot: Inspection complete!

The interesting part is the potential for initiative switch during the conversation

– either the user can go through all the parts by themselves or hand over control

to the bot to guide them, or a combination of both.5 The salient feature of the

specification is thus: there is a catch-all dialogue action to respond to the user when

they have initiative and a set of actions to ask the user for information when the

bot has initiative. There is one outcome in all these actions that switch initiative

based on what the user has said, while the other outcomes update the state of the

inspection by logging the correct variables based on the user utterance. Next, we

follow the designer’s journey to get to this specification.

Q1. Why is there no solution?

In our user story, the designer has forgotten to add a few critical domain conditions

– the OUTCOME for the initiative switch is missing in the catch-all action while the

UPDATE for spark plugs is also missing in the corresponding OUTCOME (refer back

to the introduction to D3WA for a refresher of this modeling artifacts). As a result

the model has become unsolvable – there is no way for either the inspector or the

bot to drive the initiative and visit all the parts. In Figure 11.2 the user is presented

with the minimal abstraction where the model is unsolvable. They fix this simpler

5The PDDL models of the inspection domain are available online at the following link (along with

snapshots of the specification on the D3WA+ interface) for all the use cases discussed in the chapter:

http://ibm.biz/d3wa-inspection.
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problem instance

maximal abstraction (approx) maximal abstraction (exact) minimal abstraction

size time size time size time

|P| abstraction size in % plan abstraction plan |P| abstraction size in % plan abstraction plan |P| abstraction size in % plan abstraction plan landmark

p1 21 286 86.405 5 0.882 0.956 22 307 92.749 5 5.711 0.987 2 47 14.199 1 111.363 1.014 1.103

Car p2 21 293 88.52 5 0.911 1.011 22 314 94.864 5 10.816 1.057 2 40 12.085 1 175.995 0.826 1.158

Inspection p3 21 286 86.405 5 1.069 0.967 22 307 92.749 5 13.561 1.117 2 47 14.199 1 208.862 0.863 1.088

p4 21 282 85.196 5 0.926 0.981 22 303 91.541 5 16.290 0.987 2 51 15.408 2 154.084 0.891 1.140

p5 21 286 86.405 5 0.995 0.978 22 307 92.749 5 16.351 1.058 2 47 14.199 1 237.173 0.984 1.041

p1 25 338 94.15 1 0.999 0.993 25 338 94.15 1 11.606 17.452 1 23 6.407 1 9.216 0.936 1.056

Data p2 25 338 94.15 1 1.288 1.162 25 338 94.15 1 14.279 1.157 1 23 6.407 1 13.302 0.971 1.196

Doppelganger p3 25 338 94.15 1 2.405 2.914 25 338 94.15 1 25.561 1.050 1 23 6.407 1 23.444 0.973 1.211

p4 25 338 94.15 1 0.834 0.924 25 338 94.15 1 11.035 0.935 1 23 6.407 1 11.115 0.923 1.000

p5 25 338 94.15 1 2.661 2.845 25 338 94.15 1 13.157 4.792 1 23 6.407 1 12.895 0.792 1.136

p1 75 2104 97.227 8 1.139 1.209 76 2161 99.861 8 31.396 1.202 2 61 2.819 2 1106.939 0.950 1.137

Credit p2 76 2161 99.861 7 1.113 1.070 76 2161 99.861 7 46.256 1.051 1 5 0.231 1 40.325 0.934 1.093

Card p3 76 2153 99.492 4 1.155 1.069 76 2153 99.492 4 33.903 1.105 1 12 0.555 1 29.498 0.935 1.165

p4 76 2160 99.815 7 1.040 1.149 76 2160 99.815 7 54.096 1.159 1 3 0.139 1 47.422 0.878 1.016

Table 11.1: Empirical Properties of XMAS in Three Typical Conversational Domains

Modeled in D3WA+. Notice the Massive Reduction in Size for the Minimal Abstrac-

tion, Intended to Make It Easier for the Domain Writer to Inspect Issues with the

Domain. Also Notice the Large Difference in Size Between the Minimal and Maximal

Abstractions, Thereby Indicating the Need for a Maximal Abstraction to Capture

Enough Model Information in Order to Produce a Useful Foil for the Domain Writer

to Fix.

specification to arrive at the solution in Figure 11.3a. The fix – adding the UPDATE

for spark plugs – when applied to the original specification takes the designer to the

current dialogue plan in Figure 11.3b. This interaction with D3WA+ allowed the user

to find a fix for an unsolvable model by inspecting a much simpler model.

Q2. Why is this not a solution?

However, the missing OUTCOME for the initiative switch in the catch-all action is

still missing.6 As a result, all solutions right now only involve the user driving the

6We want to impress on the reader at this point that this discussion of “mistakes” or missing

components are in hindsight – the target model does not exist until the domain designer gets there.
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conversation and the resulting solution in Figure 11.3b looks different from what the

designer was expecting – i.e. it does not contain any conversation flow where the bot

has initiative. The domain writer expects the sample conversation to be possible but

do they know it’s unsolvable, at all? In the spirit of XMAS, the domain writer gets

to query D3WA+ with this foil – see Figure 11.4. The system again responds with a

minimal abstraction to fix, along with a sample plan and an unachieved landmark

in the maximally solvable abstraction illustrating why that foil fails in the current

model. This not only explains the unsolvability but also provides powerful directive

to fix the model.

11.4 Empirical Evaluations

We empirically investigate the properties of XMAS in terms of the size of the ab-

stractions relative to the size of the original specifications, and the time taken to

generate them. The size of the abstraction allows us to measure how much simplifi-

cation of the model is achieved by our method, while the time taken is a measure of

viability of our approach. We focus on Q1 here since the properties of the solutions

to Q2 are derived from Q1 while, as we mentioned before, Q3 is already quite well

understood in existing literature.

Test Domains

To test out the empirical properties of our approach, we use two new domains, in

addition to the car inspection domain used in the illustrative examples. The first of

them – Data Doppelganger – is an assistant chat-bot that that helps a user perform

variety of data science tasks, such as plotting a graph, given a data set. The other

new domain – Credit Card Recommendation – is again adopted from (Muise et al.,

2019a), and takes the user through choices of credit cards and their features until
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they make a selection.

To evaluate the effectiveness of XMAS, we needed to evaluate the systems on plau-

sible mistakes on these test domain. For Table 11.1, we tried to create unsolvable

problems for the first three domains by removing three model conditions at random.

Specifically, we deleted adds and initial states from the model. Unfortunately, for the

credit card domain randomly removing a subset of model components weren’t yielding

unsolvable problems. So instead, we went with a unique domain-specific mistake for

each of the five cases. Each mistake was centered around the domain author missing

adds for a specific outcome or initial state for a specific proposition. After identifying

a reason for unsolvability, we further delete two additional adds per unsolvable in-

stance. The solvability of the determinized problems was tested using FastDownward

(Helmert, 2006) implementation of A∗ and LM-Cut (Helmert and Domshlak, 2009).

The landmarks were extracted using FastDownward implementation of method presed

by Keyder et al. (2012) with m = 1. All experiments had a timeout of 60 mins.7

Model Compression

Table 11.1 shows the amount of compression offered by the abstraction, against the

size of the full models, for five randomly generated unsolvable instances. Here the size

of each possible model is reported in terms of the number of non-goal fluents that are

part of it (|P|), the number of model conditions that are part of the problem (denoted

as size in the table) and the percentage of model conditions remaining as compared

to the original domain model (denoted as ‘size in %’ in the table). The larger the

compression, the easier we make it for the domain writer to understand the cause of

unsolvability, as has been established in existing literature (Chapter 10). Clearly, we

are able to significantly reduce the size of the specification for this purpose using the

7p5 for credit card domain timed out (removed from Table 11.1).
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# edits 1 2 3

problem |P| size time |P| size time |P| size time

p1 2 47 49.477 2 51 87.685 3 3 3

p2 2 40 152.989 2 51 193.358 - - -

p3 2 40 184.747 3 3 3 3 3 3

Table 11.2: Size of Abstractions along the Entire Model Reconciliation Process During

the Model Acquisition Task.

proposed abstraction approach. For the credit card domain, where the original model

contains close to 2k components, being able to focus on a subset containing only 5

conditions is a massive reduction.

Maximal versus Minimal Abstractions

Table 11.1 also shows the difference in size of the plans in the minimal8 and maximal

abstractions. As we mentioned before, this was a specific design choice made so as to

ensure that the domain writer has a reference point while inspecting an unsolvable

model – they can use this either to debug the current model or to explore newer

foils. The point of computing this reference point in the maximal as opposed to

the minimal model (as evident from Table 11.1) is to provide more helpful debugging

information to the domain writer – XMAS is not just about explaining unsolvability but

also completing the model acquisition task. The reference point uses the maximal

model in order to make sure maximal number of model features are considered so

8Note that since the minimal model is also unsolvable, the plans used here for comparison are

from the models that are one abstraction simpler than the minimal unsolvable model.
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that the generated foil is as close as possible to a plan the user might be looking

for in MH . In Table 11.1, we refer to generating maximal model by starting from

abstraction corresponding to F \Pmin while the exact one refers to a systematic search

starting from the most concrete domain to one where it is solvable. While search for

maximal model was in general fast, we can see that the approximate method is much

faster and finds models that are quite comparable to the exact minimal solution.9

Model Evolution

In Table 11.2, we illustrate the evolution of the size of the abstractions as the domain

writer progressively fixes the car inspection model. To simulate this, we needed to

create models with potentially multiple causes for unsolvability. We generated nine

pairs of model conditions (adds or initial state), each of whose removal can lead to

an unsolvable problem. We then created three problems by removing three of those

pairs. This means the model could have from one to potentially six unique causes

for unsolvability. We passed each of these problems through our system, looked at

the abstractions, made fixes and then tested if there were further issues. For p1 and

p3, we were able to successfully make the problem solvable. While for p2, we were

able to fix two issues, but the explanation system timed out on the third trial. This

illustrates the journey of the domain writer towards converging the space of solutions

inM andMH and the massive simplification of the model complexity offered by the

proposed approach along this journey.

9An interesting course of investigation in the future would be adopting the considerable body

of work in the determination of dead ends during planning (Steinmetz and Hoffmann, 2017; Muise,

2014; Kolobov et al., 2010) for XMAS. While our motivation here is user facing and is thus quite

different to those works – i.e. we want to use abstractions to facilitate explanations, particularly

in the model acquisition task, rather than speed up planning – it would be interesting to explore

whether those techniques can speed up the explanation generation step in the future.
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Computation

Finally, we report the time taken to compute the different components of the planner’s

directive to the domain writer, in Table 11.1. We do not explore optimizations in this

chapter, but we are well within the bounds of real-time use even for the massive credit

card domain.

11.5 Concluding Remarks

In this chapter, we revisited the HELM framework and extended it to support

models with non-deterministic effects. As part of this generalization, we introduce

an abstraction function for such models and also introduce a way to identify unsolv-

able landmarks. We then evaluate the utility of such explanation generation methods

by utilizing them in the context of a model debugging tool and in the process also

introduce the notion of model-acquisition task. The specific debugging tool was de-

veloped as an extension of an existing tool developed by IBM for allowing dialogue

designers to specify the behavior of automated dialogue agents. The domain debug-

ger tool was also presented as a demo in ICAPS-2020, where it was also one of the

recipients of the best ICAPS demo award for that year. In the next chapter, we will

take another step to further generalize this series of work, by showing how they can

be understood as being instances of a more general explanatory framework called

the Model-Simplification framework. Additionally, we will show how this general

framework could be used to generate explanations for stochastic planning problems.
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(a) XMAS

Past: So-

lution of

the Minimal

Abstraction.

Now That

the Designer

Was Able

to Fix the

Simplified

Domain,

They Can

Try Apply-

ing the Fix

to the Full

Specification.

(b) XMAS Present: This Is

the Solution When the Fix

to the Minimal Abstraction

Is Applied to the Full Spec-

ification. Now It Is at

Least Solvable but Some-

thing Doesn’t Look Quite

Right: The Solution Does

Not Match the Expectation

of the Domain Designer.

Now That They Have a So-

lution to Work with, They

Now Direct Questions of

the Form of Q2 to D3WA+.

Figure 11.4 Illustrates One

Such Interaction.

(c) XMAS

Present:

The Domain

Writer Solves

the Minimal

Abstrac-

tion Again.

Applying

This Fix to

the Original

Specifica-

tion Takes

the Domain

Writer from

Figure 11.3b

to 11.3d.

(d) XMAS Future: This Is the

Final (Target) Solution: A

Model That Is Equivalent to

Mh. The Domain Writer, of

Course, Does Not Have Access

to This until They Get There

– and Neither Does D3WA+–

but Instead They Continue

Working on Their Current

Specification and Its Solution

(or the Lack Thereof) until

They Are Satisfied. During

the Course of XMAS, the Sys-

tem Was Able to Guide the

Designer along This Journey

by Exposing the Mistakes in

Their past Models.

Figure 11.3: Examples of Generated Dialogue Graphs Illustrating the Reconciliation

of Mh to M During XMAS. The Nodes in the Graph Stand for Agent Actions While

the Edges Are the Non-deterministic Outcomes. The Graph Is Meant to Give the

Reader a Sense of the Sizes of the Abstract Solutions. Though the Actual Labels

on the Nodes and Edges Are Not Visible Here, the System Does Allow the Domain

Designer to Drill down Further as Required.
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Figure 11.4: Snapshot of D3WA+ Illustrating Foil-based Interactions When a Model

Is Solvable but Does Not Match Expectations. Note How Small This Projection Is

(Inset), Even Smaller Compared to the First Unsolvable Model in Figure 11.2: the

Corresponding Solution in Figure 11.3c is Similarly Smaller than the One in Figure

11.3a. This Showcases an Interesting Property of XMAS– the Size of Abstractions Is

Non-monotonic in the Course of the Model Acquisition Task. On the Right, We Can

See Here the Foil Generated by D3WA+ from the Maximal Abstraction with Diagnostic

Information on How This Fails in the Current Specification.
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Chapter 12

EXPLANATION THROUGH MODEL-SIMPLIFICATION

Through the previous chapter in this part of the thesis, we looked at the vari-

ations of an explanation generation framework called HELM, that are designed for

scenarios where the human confusion about the robot decision comes from an inher-

ent inferential capability gap between the robot and user. In this chapter, we will

introduce a general framework for generating explanations in the presence of such

inferential capability gaps. A framework that will be grounded in the generation of

simplified representations of the agent model that is sound for a given explanatory

query. This framework allows us to develop the most general algorithm we are aware

of for generating explanations aimed at addressing inferential capability gaps. We

will also see how many of the existing works in this direction can be understood

as limited forms of this more general method. While the ideas we present in this

chapter are general enough to be applied to any decision-making framework, we will

focus on instantiating the framework in the context of stochastic planning problems.

As part of the instantiation, we will also provide an exhaustive characterization of

explanatory queries and an analysis of various classes of applicable transformation.

We will evaluate the effectiveness of transformation-based explanation through both

synthetic experiments and user studies.

The rest of the chapter will be structured as follows; In section 12.1 we will start

with a running example that we will use throughout the chapter. We will then start

the technical discussion by introducing the basic framework (Section 12.3), which will

lay out the basic algorithm and the concept of the model simplifying transformations

that will act as the basis for explanations. In Section 12.3.1, we will also introduce the
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concept of explanatory witness, which could be used to further help the users make

sense of the explanation. With the basic framework in place, we will delve deeper into

the grounding of the framework in the context of stochastic planning problems, and

go over the characterization of each component of the framework in this setting. This

would involve providing an exhaustive characterization of contrastive explanatory

queries possible in stochastic planning settings (Section 12.4) and introducing a set

of model transformations with some precedence in the explanation literature (Section

12.5). Each model transformation class presents a conceptually consistent formal-

ization of a large class of specific transformations that could be applied to a given

planning problem to simplify the problem. For each transformation class, we will also

point to some previous works in the wider explainable AI (XAI) literature that have

applied similar techniques thereby presenting a previous instance of an application

of a limited form of our proposed general framework. For each transformation class,

we introduce one specific technique which only takes polynomial time to perform and

analyze the properties of the proposed technique for the class of stochastic planning

problems we are interested in. In Section 12.6, we will look at the various possible

stand-ins for the human computational model we could use in the framework. Section

12.7 will discuss a user study we ran to measure the effectiveness of the individual

transformation. We will use the lessons from this user study to also introduce the

stratified search algorithm (Section 12.5), which is a more constrained version of the

algorithms introduced in Section 12.3 and is specifically designed for the transforma-

tion classes introduced in Section 12.5. Section 12.9 presents empirical results over

a simulated study to evaluate the effectiveness of the explanation (using automated

stand-ins to measure the complexity of the explanation). In section 12.10, we will

further see how most current works aimed at addressing the inferential capability

gap can be seen as a specific instance of our more general framework in that they
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look at the use of some limited set of transformations or focus primarily on the use

of some explanatory witness. All the frameworks and analyses will be grounded in

the context of MDPs with the P assumption (i.e., Positive action cost assumption)

(Bertsekas, 2005), which generalizes over many commonly studied stochastic planning

formalisms.

12.1 Running Example

Figure 12.1: The Model Simplification Process Used to Generate the Explanations

for the Motivating Example, Where a Robotic Chef Needs to Explain Its Inability to

Bake a Cake.

Figure 12.1 presents a diagrammatic representation of the overall explanatory

process entailed by the methods proposed in the chapter. Specifically, the figure

refers to an example scenario which considers a robotic chef working in a house. The

user of the robot starts by asking the robot to bake a cake, to which it replies it

can’t bake a cake. Now the user demands an explanation for its failure to prepare

a cake. The robot may have come to the conclusion that it cannot prepare a cake

241



from the fact that its stochastic task and motion planner failed to produce a valid

plan. Dumping its search tree or the underlying model to the human would hardly

suffice as a satisfactory explanation. Once the robot further analyzes the query, it can

realize that even if it were to ignore the stochasticity of the domain (related to various

slippages the robot may incur in its operation) and all the motion constraints, the

problem remains unsolvable. In fact, the robot can’t even create cake batter which

is required for the final goal because it doesn’t have a whisk. Thus the robot could

ignore all low-level details and just needs to inform the user about a simplified model

that includes information about the mixing action that makes the cake batter and

how the action has a precondition has a whisk and currently, there is no whisk.

Additionally, the robot could even provide a hypothetical trace of actions it would

perform to make cake batter and how it would fail due to a missing precondition. We

will refer to such secondary explanatory information meant to help the user better

understand the explanation being given as explanatory witness.

12.2 Background

Following Section 2.3, we will be assuming an undiscounted MDP that satisfies the

P -assumption. Such a model will be represented by the tupleM = 〈S,A, P, C, I,G〉,

where S is the state space, A the set of possible actions, P : S × A × S → [0, 1] the

transition probabilities, C the cost of executing a given action in the state (where

C(s, a) ≥ 0), I ∈ S the initial state and G ⊆ S, is the set of absorbing goal states.

We will use the functions J : S → R and Q : S×A→ R to capture the expected total

cost and Q function and use J∗ and Q∗ to represent the optimal cost and Q function

respectively. We will use Jπ to denote the cost function obtained by following a

given policy π. We will use P π(s) =
∑

g∈G P (g|s, π) to denote probability with which

the execution of policy from a given state would lead it to a goal state. We will
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use P ∗(s) to denote the highest possible probability of achieving the goal under any

policy for the given model (i.e as the MAXPROB policy) and use P π(s) to capture

the probability under a given policy.

We will use the tupleMD = 〈FD, AD, ID, GD, CD〉, to represent the PPDDL repre-

sentation of an MDP. We will limit our attention to cases with positive preconditions,

so, each a ∈ A is further defined as a = 〈pre+(a),E(a)〉. For a given descriptionMD,

we will use the notationM to refer to the MDP induced by it, especially if we don’t

explicitly mention the underlying MDP.

Such factored model descriptions are usually easier for people to understand and

create, not just due to conciseness, but also because it is based on folk psychology

principles related to actions and as such are intuitive descriptions (Boonzaier et al.,

2005). We assume that models are provided in such descriptions, though one could

always start with an atomic or inscrutable representation of the model and derive

such models through different learning methods (Sreedharan et al., 2022c; Konidaris

et al., 2018)

12.3 Model Simplification Framework for Contrastive Explanation Generation

Our basic explanatory setting consists of a sound and optimal model-based decision-

making system that uses modelMR∗ (which may correspond to a descriptionMD∗),

to come up with its decisions and it needs to respond to possible explanatory queries

a user of the system may raise either about its current decision or about alternative

decisions the user may have expected.

The central focus in this chapter is to provide contrastive explanations (Miller,

2017a), where contrastive explanations are said to be explanations that are responses

to questions of the form “Why P and not Q?”, where ‘P’ is referred to as the fact

being explained and ‘Q’ is referred to as the foil the fact is being contrasted against.
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There is a lot of evidence from social science literature that contrastive explanations

underpin most of our everyday explanatory dialogues and as such has been receiving

a lot of attention in recent years (Miller, 2017a; Hoffmann and Magazzeni, 2019; Weld

and Bansal, 2019). In our scenario, we are always interested in answering questions

of the form.

“Why policy π and not any policy in the set Π′”

That is the explanation always comes down to establishing the choice of one policy

π (possibly the current one being proposed by the system), over the set of alternate

policies (possibly expected by the user). If the system is actually claiming that

problem is unsolvable, i.e., the goal cannot be achieved (as in the case of the example

covered in the introduction), the fact could also correspond to having no solution

(more formally one could also map this to a special type of policy, but we will skip

this formalization for simpler exposition). In cases where the system is a sound,

complete and optimal decision-maker, the answer to this question always takes the

form of establishing the preference of one policy over another (or at the very least

establishing they are equivalent). In the case of the MDP classes studied in this

chapter, this always takes the form of establishing that the fact policy either has a

higher probability of achieving the goal or lower cost as compared to the policies in

the foil set. One of the important challenges to generate explanations for such queries

is that in most cases the foil set may not be exactly specified. For example, in the case

of the introductory example, the question “Why can’t you bake cake?” only implicitly

specifies the set of possible foils. In fact, in this case, the foil set corresponds to

the set of all possible policies, thus one could re-frame the question in an explicitly

contrastive form as

“Why is the system claiming that no solution is possible as opposed to following any
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policy?”

In this chapter, we will argue that one could achieve a deeper insight into the

explanatory process by separating the form of the question from the underlying model

property that needs to be established as part of resolving the user query. In essence,

one could convert every contrastive explanatory query into a problem of establishing

that a planning model can only generate solutions that satisfy a particular threshold

with respect to one of its optimization criteria.

Definition 31. For any given explanation query, a tuple P = 〈O,X〉, where O is an

optimization criterion (cost C or probability P) and X is a threshold (either an upper

bound or a lower bound) over O, is said to be an explanatory property for the

given query if one could resolve the query by establishing that a model M cannot

generate a solution that violates that threshold (we will denote this as M |= P).

With respect to the example query from the introduction, one explanatory prop-

erty could be P = 〈P,= 0〉, i.e., if the property P is true for a model, then the model

can’t allow any solution whose probability of achieving the goal is not equal to 0.

While Definition 31 may seem like a very permissive definition where one could

have arbitrary thresholds over each optimization criteria, the fact that these explana-

tory properties are meant to resolve meaningful explanatory queries does restrict the

forms they can take. For example, one would never require the establishment of the

fact that one can generate policies that are worse off than the current policy either in

terms of cost or goal achievement likelihood. After all, any response to a contrastive

query is trying to show that you can’t do better than the current policy in terms of

either optimization criteria.

In Section 12.4, we will look at an exhaustive characterization of all the possible

types of explanatory properties and how in fact every possible contrastive query map
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into this particular form. It is also worth noting that, for any given explanatory

query, there might be multiple possible explanatory properties, especially ones that

use a different optimization criteria. However, given the fact that there exists a

strict ordering between the optimization criteria, we will generally prefer explanatory

properties related to the criterion with the higher preference. We will denote the

fact that the explanatory property Pi is preferred over a property Pj, by using the

notation Pi ≺ Pi.

This chapter will build on the basic fact that humans are agents capable of rea-

soning about sequential decision-making problems. Thus one way to respond to a

given query may be to provide the underlying model used to generate the decision.

As long as the model is in a human-readable form1 one could always communicate

this information and expect the human to try to reason about whether the relevant

explanatory property holds on their own. This directly connects to earlier works in

model reconciliation explanation (Chakraborti et al., 2017), where the goal of expla-

nation is to provide humans with enough model information that they can correctly

evaluate the plan in question. In fact, the setting studied in this chapter corresponds

to a model-reconciliation explanation scenario where we assume the human has no

previous information about the system model. Model-reconciliation explanations fo-

cus on optimizing for additional criteria like minimizing the amount of information

to be provided as part of the explanation. While still relevant in our case, we will

leave operationalization of such criteria as future work and focus on the basic tenet

that a person would find their explanatory queries resolved if their updated model

can support a justification for the query (in our case this corresponds to whether the

updated model support an explanatory property P). However, the original model-

1We assume our models to be already in human-readable form, and even if they are not one could

always convert them to such a form using methods like those discussed by Sreedharan et al. (2022c)
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reconciliation explanation method assumes that humans have adequate inferential

capability to correctly use the given model to perform the necessary verification.

This is not an assumption that is necessarily met in practice as the model could be

quite complex. Thus our explanation method needs to explicitly take into account

how easy it is for a user to understand the explanation.

To capture the inferential burden placed on the human by any explanation, we

will introduce the function CompH(·, ·) to denote the computational capability of the

human. Specifically, CompH(·, ·) takes a model M and an explanatory property P

and gives the expected time taken for the user to verify that an explanatory property

holds in the given model. We will assume CompH(·, ·) returns ∞ if the human is

incapable of establishing the truth of the property.

An inferential capability gap is said to exist between a human and a decision-

making system in the context of a model M and an explanatory property P , if the

computational effort required by the human doesn’t match the one required by the

agent, i.e, let Compsys is the corresponding function that stands-in for the computa-

tional effort required by the agent, then we assert that an inferential capability gap

exists between the two in the context of M and P , if

Compsys(M,P) 6= CompH(M,P)

In theory, we could have Compsys(M,P) > CompH(M,P) and one could also have

cases where for the same model the human has an easier time establishing some

property, while in the system is better at establishing others. However, in this chapter

we are mostly interested in cases where we have Compsys(M,P) < CompH(M,P)

Now the central argument we will make throughout this chapter is that even if

the complexity of establishing an explanatory property in the original model is high

(measured in terms of CompH(M,P)), one can use simplified representations of the
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original model where one could establish the same property with lower effort. We can

now give the user information about this simplified model and even use this model

as a basis for generating other explanatory information. In particular, we will look

at the generation of explanatory witnesses that will help the user better understand

why the property holds in the current model.

Towards formalizing this intuition of explanation generation, we will first start

by introducing the notion of model transformation that will become the basis of

our remaining framework. In this chapter, we will refer to a model transformation

function as one that takes a valid MDP model and generates a new MDP specification,

i.e., it takes the form F· :Mi 7→ Mj whereMi was the original MDP andMj is the

newly generated MDP. However, this is an extremely weak notion and not one that

in anyway helps us build model representations that could help resolve users’ queries.

To establish that, we need to introduce two new notions about the transformations,

namely, soundness of transformation and whether the transformations are building

simpler representations.

The soundness of transformation relates to whether any explanatory property that

holds in the new model has a corresponding property that holds in the original model,

or more formally:

Definition 32. A model transformation Fi is said to be a sound transformation

for a model M with respect to an explanatory property Pi, if Pi holds in Fi(M) only

if it holds in M.

Note that we are not requiring the transformations to always preserve the ex-

planatory property, i.e., Pi holds in M if and only if Pi holds in Fi(M). As we will

soon see, most of the effective transformations we will look at, result in optimistic

approximations, where we can’t always guarantee that the transformations will pre-
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serve the property but we can be sure that the transformations are sound as defined

above, i.e., there could exist properties P , such thatM 6|= P but Fi(M) |= P . Each

transformation described in the running example, which we will go in further details

in Section 12.5, are examples of sound transformation for the explanatory properties

〈P,= 0〉

Now we will assert that a transformation results in a simpler representation or

equivalently is a simplifying transformation if it is easier to establish the property in

question in the resultant model, i.e.,

Definition 33. A transformation Fi is said to be a simplifying transformation

for a modelM and property P, if CompH(M,P) > CompH(Fi(M),P), additionally

F(M) is referred to as a simpler representation of M.

One could now see that what we hope to build as explanations are models that

are built by repeated application of simplifying but sound transformations. However,

there is a big question we have yet to answer, namely, how does one stop the method

from generating extremely simple models that are nonetheless completely discon-

nected from the original problem at hand. Effectively this would turn the output of

the methods into lies rather than satisfying explanations (comparable to discussions

provided by papers like (Chakraborti and Kambhampati, 2019c)), as it would give the

user no further insights into the original planning problem. One could try to avoid

this by placing restrictions on the types of models generated by the transformation

functions. For example, requirements like the need to share action/state-space or the

need to preserve some transition function. However, most of these methods are too

limiting and insufficient when we consider cases where there might exist a vocabu-

lary mismatch between the user and the decision-maker (Sreedharan et al., 2022c).
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In such cases, one might need to translate the current system representation into

forms that are easier for the user to follow and it may be quite hard to establish any

form of equivalence between model components of the learned models and the original

model. Instead in this chapter, we will define the validity of the explanations in terms

of their impact on human expectations about the system. In particular, we will re-

quire that the transformed model doesn’t satisfy any explanatory property not true

in the original model. Effectively this would make sure that the transformation does

not prevent the user from asking any question they might have about the system’s

capabilities. This will effectively ensure that the user doesn’t place unwarranted trust

in the system due to the explanation, a necessary property for generating effective

posthoc explanations (Sreedharan et al., 2022c). We will refer to such as universally

sound transformations for a given model:

Definition 34. A transformation function F is said to be universally sound for

a model M, if for any explanatory property P, we have F(M) |= P, then M |= P.

Equivalently we will refer to the model F(M) a universally sound representation of

M.

All the transformations we will discuss in Section 12.5 are examples of universally

sound transformations. Additionally, we will require that every transformed model

presented to the human be explicitly noted to be a simplification of the true model,

while noting the exact relationship between the true model and transformed model

when possible. Usually when we look at transformations that are generated through

syntactic transformations of human readable model descriptions (as in the case of

transformations discussed in Section 12.5), such relations are much easier to note.

With these basic definitions in place, we can describe the central explanatory

problem as finding a minimal simplified representation sufficient that is sound for an
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explanatory sufficient to respond to the given explanatory query. In this chapter,

we will look at generating simplified model for a given explanatory property, with

assumption being that we will try to find an simplified model sound with respect the

most preferred explanatory property in the original model.

Definition 35. Given a model MR∗, a set of universally sound transformation func-

tions F = {F1, ...,Fk}, the problem of generating a minimal explanatory model

for a given explanatory property P, corresponds to the problem of finding a sequence

of transformation Tmin which results in a simplified representation M that is sound

for P and there exists no other sequence of model transformations that will result in

a simpler yet sound representation, i.e,

6 ∃T ′ CompH(Tmin(MR∗),P) > CompH(T ′(MR∗),P)

The new model Tmin(MR∗) will form the basis of the explanation.

The basic algorithm for generating such minimal explanations is given in Algo-

rithm 8, which correspond to an exhaustive search over all possible transformations

and then returning the transformation sequence, explanatory property pair that meets

the requirements provided in Definition 35.

Note that the above algorithm is an extremely computationally expensive one.

The search space is exponential over the number of transformations possible and each

search node evaluation in our case consists of solving a planning problem. However,

as we will see in Section 12.8 by making commitments on the types of transformation

and model classes, we can make use of a significantly more efficient search algorithm.

12.3.1 Explanatory Witness

Even after providing the model, the user may not be able to reason about the

explanatory property on their own and as such may require additional assistance.
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Algorithm 8 Basic Search

1: procedure search

2: Input : MR∗ ,F, P

3: Output : The transformed model M

4: Procedure:

5: Tbest = 〈〉

6: Curr Minimal Effort ←∞

7: for Each subsequence T ′ of F do

8: Comp Effort ← CompH(T ′(MR∗),P)

9: if Curr Minimal Effort > Comp Effort then

10: Tbest = T ′
return Tbest(MR∗)

We will refer to such information as Explanatory Witness. XAI literature includes

many examples of such information, and in fact, many works focus on identifying

such information, while making implicit assumptions about the model information

with which the user is supposed to make sense of this information. In general, from

the current literature we can identify three categories of such information;

1. Proof of explanatory properties: A proof of the property being explained, which

in our case can be provided in the minimal model. Though unfortunately, it

is very hard to create exact interpretable proofs for most query properties. In

general, most of these proofs would be incomplete or abstract in the sense of

skipping some steps. An example of such abstract explanatory witnesses would

be the use of Q-values to contrast the current choice against alternative (as in

the case of (Juozapaitis et al., 2019)). Here the explanatory witness doesn’t

provide information as to why the current action in a state or the alternative
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has a specific Q-value.

2. Existential Information: This corresponds to presenting instances of potential

solutions (plan/policies) or parts of solutions (a specific execution trace from a

given policy) that acts as a demonstration of the property being explained.

3. Counterfactual Information: In the final category, the user is provided by exam-

ples of counterfactual solutions and even planning models, where the property

being explained doesn’t hold. The assumption being that these examples would

help the human get a better sense of when the property might not hold.

While generating explanations for user studies we will use a sampled policy execution

trace as the corresponding Explanatory Witness (a type of existential information).

For example, when trying to explain why the cost of a policy may be above some

threshold, then one could find a specific execution trace, i.e., a sequence of states,

actions and resulting state that can be sampled from the current policy and show

that the cost of that trace is above the current threshold. This is a particularly

appealing for cost property (PE1). For properties related to goal reachability, possible

explanatory witness include the use of qualitative occupancy frequency (similar to

(Khan et al., 2009)) and for unsolvability one could present the infeasibility of some

example paths to the goal (as in the case of (Sreedharan et al., 2020b)).

Section 12.10 includes a discussion of existing types of explanatory witnesses studied

in the literature.

In the rest of the chapter, we will revisit each component of our framework, namely,

explanatory properties, transformation and computational model (CompH(·, ·)) and

ground it for our specific setting of stochastic planning. As discussed, we will use our

the properties of our specific properties, transformation and proxies for CompH(·, ·)

to propose a much more efficient version of identifying minimal explanations.
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Figure 12.2: A Hierarchy of Why Questions That Can Be Asked by a User Try-

ing to Understand Decisions Generated by an Automated Decision-maker Using an

Undiscounted Mdp That Meets the P Assumption.

12.4 Explanatory Queries and Explanatory Properties

Figure 12.2 presents the hierarchy of questions possible in this problem setting

categorized over the two criteria. Now for each type, we further list two possible

subcategories. The first category corresponds to queries exclusively about the current

best solution provided by the system and the second corresponds to queries that

contrast the current policy with an alternative the human had in their mind. In the

former, the user would want to understand why the solution is worse off than what

they were expecting (say in terms of goal reachability or cost), and in the latter, the

user would want to know how the current policy compares against the alternative

they had in mind. In the end, both categories can be mapped into a question that

can be resolved by comparing a policy against a threshold. In the case of the former
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category, the threshold directly comes from the user’s question and the system’s policy

is compared against it (for example, the kind of questions that might fall into this

category would include instances like Why does the policy cost more than X? or Why

is the likelihood of reaching the goal less than Y?), while in the latter the alternative

posed by the user is compared against the cost or goal reachability of the current

policy. In the end, the query hierarchy concretizes into three specific query types.

Each query type is characterized by a specific explanatory property,

1. PE1 stands for the fact that there exists no policy that has a cost less than a

certain threshold for the initial state under the model

2. PE2 stands for the fact that no policy achieves the goal from the initial state

with non-zero probability

3. PE3 stands for the fact that there exist no policy whose probability of achieving

the goal from the initial state is above a certain threshold.

These properties classes correspond to a large set of specific explanatory properties

and the exact threshold is determined by the specific query. For a specific model M

and a threshold X, we will denote the fact that an instance of the property class P·

holds for the threshold as M |= P(X) (in the case of Pε2 X is limited to 0). While

the properties themselves are described with respect to the initial state, one could

generalize it to be considered against arbitrary states for the model (equivalent to

considering whether the property holds in a model where the initial state is set to the

new state in question).

A point to keep in mind is that even though the properties are defined over models,

one could still use this convention to capture policy specific query. In such cases, we

just need to consider a modified version of the model that only allows the policy in

question. For example, if the user raises an alternative (by specifying actions to be
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performed in some of the states) and the system needs to explain why this alternative

does not lead to the goal. Then the system can create a new model where the only

action possible under the states mentioned are the ones provided by the user. Now

the system needs to show how the likelihood of getting to the goal in this modified

model is zero. Such a model-compilation strategy are particularly well suited to our

setting, as it is quite unlikely that a user would provide one fully specified policy.

At most, they partially specify some subset of the policy, a partially ordered set of

subgoal or a specification in some formal language like LTL or LTLf (Eifler et al.,

2020a). Such partial specifications maybe best thought of as imposing a constraint

over the model in question (Sreedharan et al., 2019b).

In this case, we have split the queries related to goal reachability into two distinct

categories, even though, one could specify it as a comparison to a threshold. The

reason why we chose not to do that, is two-fold;

1. Not only are queries about unsolvability a natural and commonly studied ex-

planatory query type (Chapter 10), they are also a lot more accessible and more

likely to be used by non-experts who may not be aware of or comfortable with

the exact probability associated with the planning problem.

2. One can apply many more explanatory techniques to answer questions related

to solvability, which is not necessarily applicable to questions that use direct

comparison to probability threshold. For example, as we will see, the use of de-

terminization or even the use of models with purely qualitative non-determinism

is possible to answer queries related to solvability but doesn’t apply to queries

that explicitly use probabilistic thresholds.

Any possible contrastive query, which can be answered by decision-making system

would correspond to one of these explanatory properties. following the conventions
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generally used in MDP solution strategies, we will establish a strict ordering between

the properties, namely, Pε1 ≺ Pε2 ≺ Pε3 .

12.5 Model Transformation Classes

In this section, we will look at some specific transformation classes. The classes

were selected based on the fact that some restricted forms of these transformations

were already studied in the wider XAI literature. For each class, we will introduce a

general characterization of that transformation. Then look at a specific way to achieve

it via syntactic transformation of the human readable model description (MD∗) that

takes polynomial time with respect to the size of the model description. That is, we

will look at specific ways to generate updated model descriptions that will correspond

to an MDP that satisfy the requirements of the corresponding transformation.

12.5.1 State Abstractions

The first transformation we could make use of is state abstraction that can help

reduce the underlying state space of the MDP (Li et al., 2006), which has been used for

explaining deterministic plans (Sreedharan et al., 2021d) and to summarize policies

as by Topin and Veloso (2019). In particular, we will consider state aggregations that

replace a set of states in the underlying MDP MR∗ with a single state (Van Roy,

2006). In the example, it will be state abstraction that will let us ignore most of the

state variables including those related to motion level constraints. We will define state

abstraction as

Definition 36. For a given model M = 〈S,A, I, P, C,G〉, we will define M̃ =

〈S̃, Ã, Ĩ, P̃ , C̃, G̃〉 is said to be an abstraction of M, if there exists a surjective map-

ping from states and actions in M to M̃ (where F be the mapping), then ∀s1, s2 ∈ S

and for any a ∈ A, if P (s1, a, s2) > 0, then P (F(s1),F(a),F(s2)) > 0.

257



Figure 12.3: A Diagrammatic Representation of the Transformation Induced by the

Abstraction Function on the Transition Probabilities. Here the Projection Operation

Causes the States s2 and s3 to Collapse into a Single State s2′.

While state abstraction has been a popular topic of investigation in MDP plan-

ning/RL topics. We are particularly interested in its use to create sound represen-

tation for all the queries. Since we are looking at symbolic representation, it would

be useful to have methods that create abstractions that are valid symbolic models.

Specifically, we can make use of syntactic projections of the model descriptions, which

have previously been used for generating heuristics (Klößner et al., 2021).

12.5.2 State Abstractions Through Syntactic Projection

We will define the transformation as

Definition 37. For a given model description MD = 〈FD, AD, ID, GD〉 and a set

of propositional factors Λ ⊆ FD the syntactic projection (represented as a function

FF\Λ) results in a new model description FF\Λ(MD) = 〈FD\Λ, AFF\Λ , ID\Λ, GD\Λ〉.

Where the new actions AFF\Λ is given as follows: for each ai ∈ AD, there existing

a corresponding action FF\Λ(ai) = 〈preci \ Λ〉 (To simplify discussion we will be

overloading the notation FF\Λ to stand for any mapping from the components of the
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original model or description to those in the new model)

FF\Λ(Ei) = {〈addji \ Λ, delji \ Λ, p′, c′〉| 〈addji , delji , p
j
i , c

i
j〉 ∈ Ei} (12.1)

Where the new probability of the effect p′ is given as

p′ =
∑

〈addki ,delki ,pki ,cki 〉∈Ei ,where addki \Λ=addji\Λ and delki \Λ=delji\Λ

pki

c′ = min{cki |〈addki , delki , p
k
i , c

k
i 〉 ∈ Ei

,where addki \ Λ = addji \ Λ and delki \ Λ = delji}}

(12.2)

So effectively the transformation removes every appearance of a fluent being pro-

jected out from the description, and if this results in mutually exclusive effects to be

duplicated (including being empty), then only one version of the effect is included in

the updated model, the probability of this effect becomes the sum of the individual

effects and the cost of this effect becomes the minimum of the original effects. Figure

12.3, present a visual representation of the transformation.

Proposition 28. One could create the transformed model description FF\Λ(MD),

in time polynomial over the size of the original model description and the number of

factors in Λ.

This complexity should be clear from the fact that one could do it by making two

passes through the domain model. Once to remove the fluents in Λ and the second

to merge duplicate effects. Now we will see that the MDP corresponding to updated

model description FF\Λ(MD), is in fact a valid state abstraction.

Proposition 29. The model MFF\Λ represented by FF\Λ(MD) is a state abstrac-

tion (per Definition 36) of the model M. Additionally, for any states i, j ∈ S for

MDP M, then P (i, amdpai
, j) ≤ PFF\Λ(FF\Λ(i), amdpFF\Λ(ai)

,FF\Λ(j)) and C(i, a, j) ≥

CFF\Λ(FF\Λ(i), amdpFF\Λ(ai)
,FF\Λ(j)), for states FF\Λ(i) and FF\Λ(j) in MFF\Λ.
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Proof Sketch. First off FF\Λ(MD) is a well formed model description, so there exists

a unique model MFF\Λ induced by it. The surjective mapping from state space S of

M to SFF\Λ (Overloading the notation a bit, we will use FF\Λ to also capture this

mapping) is given as

FF\Λ(i) = î if ŝi = si \ Λ

It should be easy to verify that this is in fact a surjective function. The relationship

between the probability functions and cost functions comes directly as a result of the

transformation.

We can use the abstraction function to also define a relation among the states in

the model description, such that si ∼FF\Λ sj, if FF\Λ(si) = FF\Λ(sj). Note that this

is an equivalent relation and thus help partition the state space into disjoint sets that

map into the same abstract. If ŝi is an abstract state for FF\Λ(M), the we will use

the notation F−F\Λ1(ŝi) to capture the quotient set for the relation ∼FF\Λ that maps

the state from the concrete model into the abstract state ŝi, i.e.,

F−1
F\Λ(s) = {s′|FF\Λ(s′) = s}

Unless specified otherwise, the cost function for the concrete model are denoted

as functions over just state indexes (for example J(i)), while that for the abstract

model it is denoted with states where an abstraction function has been applied (for

example J(FF\Λ(i))).

Next we will detail some simple properties of the model and demonstrate the

central properties we can use for explanation.

This takes us to the next result

Proposition 30. Probability of a trace (a sequence of action control state tuples) from

a given state to a goal state is either preserved or increases over the transformation.
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The result follows from earlier proposition.

Proposition 31. Prob of an action causing a transition from an abstract state î to

another abstract state ĵ, is equal to the sum of the probability of transitions from one

of the states in F−1
F\Λ(̂i) to all the states in F−1

F\Λ(ĵ) under that action.

The result follows from the fact that given the declaration method, all the states

that merged must have had similar effects, so choice of the state F−1
F\Λ(̂i) doesn’t

matter. The second part of the proposition follows from the transformation itself.

With this transformation in hand, we can show that the syntactic transformation

results in a state aggregation We can now show the optimal cost function in the new

model is lower than that of the original model.

Lemma 3. For every state i in the model M, J∗(i) ≥ J∗FF\Λ(FF\Λ(i)), where J∗FF\Λ

is the optimal cost function for MFF\Λ.

Proof Sketch. We can show this by initializing a cost function for the abstract model

JFF\Λ with cost from J∗, such that for any abstract state î as JFF\Λ (̂i) = mini∈F−1
F\Λ (̂i)(J

∗(i)).

If we now apply a bellman operator T , given propositions 29 and 31, we will have

TJFF\Λ (̂i) ≤ JFF\Λ (̂i)

For P condition the bellman operator is still monotonic function (Bertsekas, 2005),

and converges to the optimal cost function. Thus the oprimal cost function for FF\Λ(i)

must be less than or equal to J∗(i)

Next in regards to the probability we can establish that

Lemma 4. For every state i in the model M, P ∗(i) ≤ P ∗FF\Λ(FF\Λ(i))), where P ∗FF\Λ

is the maxprob probability for the model MFF\Λ.
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This result directly follows from Proposition 30 (a similar result was also estab-

lished by Klößner et al. (2021)). With these two propositions we have established

that state abstraction does in fact result in new models that underapproximated cost

and overapproximates reachability. Thus establishing that the syntactic projection

described here results in a valid state abstraction per Definition 36 and the resultant

transformation is sound with respect to all three explanatory properties.

Theorem 7. The domain description transformation FF\Λ corresponds to a univer-

sally sound transformation for any model that can be represented by a model descrip-

tion of the form MD = 〈FD, AD, ID, GD, CD〉

For the robot example, consider the original probabilistic effects of the mixing

action, which says you might cake batter after mixing with probability 0.5, a cake

batter with bubbles in it with probability 0.25, and with probability 0.25 no cake

batter at all.

(probabilistic 1/2 (and (has-cake-batter))

1/4 (and (has-cake-batter)

(cake-batter-has-bubbles)))

After projecting out (cake-batter-has-bubbles) you get an effect that says the

probability of having cake batter is 0.75

(probabilistic 3/4 (and (has-cake-batter)))

12.5.3 Problem Determinization

Note that the abstraction operation creates models with probabilistic effects un-

less the effects merge into a single effect. At least for some of the queries, the system

could generate valid responses while using an optimistic determinization of the model

that ignores all stochasticity of the model. For example, in the robot chef example
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even if there were no undesired side-effects due to stochasticity (the 0.25 probabil-

ity of the mixing action not forming a cake batter), the mix action could still not

be executed as it has a missing precondition (has-cake-whisk). One possible way to

create such optimistic determinization could be to generate a new model where ac-

tion with multiple stochastic effects is turned into multiple actions with deterministic

effects. Determinization belongs to a larger class of transformations (which we will

refer to as problem class simplification) that transforms the original problem to sim-

pler decision-making problems for the sake of generating explanations. While there

are some instances of problem class simplification for explanations for multi-objective

explanations (cf. (Eifler et al., 2020b)), we are unaware of any direct use of deter-

minization to simplify explanations.

All Outcome Determinization

Definition 38. MD = 〈FD, AD, ID, GD〉 a determinization is presented by an oper-

ator F∆ and generates a new model of the form F∆(MD) = 〈FD,F∆(AD), ID, GD〉.

Where for every ai = 〈preci, {e1
i , ..., e

k
i }〉, there exists k actions in F∆(AD) such that

aji = 〈preci, addji , del
j
i , 1, c

j
i 〉, i.e., it generate the jth effect with probability 1.

Such determinization operations are sometimes referred to as all outcome deter-

minization (Yoon et al., 2007). Which is also closely connected to hindsight opti-

mization techniques that have been studied in multiple fields including control theory

(Yoon et al., 2008). The transformation could be used for both cost property (Pε1) and

solvability property (PE2). Also note that for the class of models considered in this

chapter the transformation of the model description can be carried out effectively.

Proposition 32. The transformed model description F∆(MD) can be created by per-

forming a single pass through the original description MD and the maximum number
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of actions in F∆(MD) is upper-bounded by K×|A|, where K is the maximum number

of mutually exclusive effects that can appear in an action definition in A.

The fundamental property of this determinization we can use here is the following

Proposition 33. Let τ = 〈I, a1, ...., ak, g〉 be the sequence of symbolic states and

actions corresponding to a trace from the initial state to a goal state g ∈ G with non-

zero probability for the model defined by the descriptionMD. Then A(τ) (the sequence

of actions appearing in τ) is a valid plan for the deterministic planning model F∆.

That is when the sequence A(τ) is executed in I it will take you to the state g.

This property directly comes from the form of the transformation is widely estab-

lished in the determinization literature.

Lemma 5. The cost of best possible plan in F∆(MD) is guaranteed to be less than

or equal to J∗(I) for the model M corresponding to MD

After all the lowest cost trace that can be sampled from any policy is a plan in the

determinized model. As the cost of the policy should be higher than the cost of its

lowest cost trace, it should be higher than the cost of the optimal plan in F∆(MD).

Lemma 6. If the problem F∆(MD) is unsolvable then P ∗(I) = 0.

This follows directly from Proposition 33.

With Lemma 5 and 6 in place should be clear that this transformation could be

used for both cost property (P1) and solvability property (P2). One can actually in

fact make a stronger claim and show that it is even sound for (P3).

Theorem 8. The domain description transformation F∆ corresponds to a universally

sound transformation for any model that can be represented by a model description of

the form MD = 〈FD, AD, ID, GD, CD〉
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Proof. As mentioned earlier the soundness of the first two properties directly follow

the earlier Lemmas. To see the soundness with respect to Pε3 , note that F∆(MD) is

a well formed PPDDL model description, but one that only allows for deterministic

transition. So in this model the maxprob probability must be either 1 or 0. This means

that the only threshold for which Pε3 can be meaningfully established in the updated

model is for threshold 0 (discounting 1 as it as Pε3 for threshold 1 a tautological

statement). Pε3 limited to threshold 0 corresponds to Pε2 , which per our earlier

discussion the transformation F∆ is already sound for. Thus establishing the fact

that F∆ is universally sound.

With regards to the example, such transformation will allow us to ignore the prob-

ability of mix action failure when giving the explanation.

12.5.4 Problem Decomposition

Even after applying all the above transformations, the plans generated from the

resultant model could be extremely long. One way to address would be to decompose

the original task into smaller subtasks. For example, in the case of the robot chef,

rather than talking about the problem of baking cake it can focus just on explaining

the subproblem of making the cake batter. In this section, we introduce problem

decomposition with respect to an initial state that focuses on subproblems that reuse

states and actions of the original problem and is either cheaper or it is easier to

achieve the goal

Definition 39. Given an atomic MDP M = 〈S,A, P, I, C,G〉 with an optimal cost

J∗, an MDP M′
= 〈S,A, P, I, C,G′〉 with an optimal cost J ′, is said to be a subprob-

lem if it is guaranteed that J ′(I) ≤ J∗(I) (where the decomposition is called cost based

decomposition) or P ′(I) ≤ P ∗(I) (where the decomposition is called reachability-based
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decomposition).

For queries related to PE1 if we can establish that the cost of the subproblem under

cost-based decomposition is greater than the limit, then that automatically establishes

that the original problem should be worse. For queries related to reachability, we can

look for similar arguments for a subproblem under reachability-based decomposition.

Now the question is how can we find such decompositions.

Subgoals

For goal-directed problems with an initial state, a natural idea could be subgoals,

where subgoals are representations of intermediate states that the policy may need

to achieve before getting to the final goal. A specific subgoal that could be useful

here is landmarks, which were recently adapted for SSPs by Sreedharan et al. (2020c)

(the specific methods will be discussed in Chapter 21). These are propositional facts

that need to be satisfied by any path from the initial state to goal with non-zero

probability. While that paper introduced these facts as a way to summarize policies,

we use them to decompose problems and form simpler problems. Such landmarks

can be automatically extracted from the model descriptionMD∗ For example, in the

case of the baking example, has-cake-batter is a landmark for the goal bake-cake. A

problem decomposition using landmarks as the new goal is both a cost and reachability

decomposition and is sound for all three explanatory properties.

Lemma 7. If f ∈ FD is a fact landmark for the MDP corresponding MD =

〈FD, AD, ID, GD〉, then the model FD(MD) = 〈FD, AD, ID, f〉 is both a cost-based de-

composition and probability-based decomposition. i.e., J∗FD
(I) ≤ J∗(I) and P ∗FD

(I) ≤

P ∗(I), where J∗FD
and P ∗FD

are the optimal cost function and MAXPROB probabilities

for the model corresponding to the description FD(MD)
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Proof Sketch. Let τ = 〈I, a1, ...., ak, g〉 be the sequence of symbolic states and actions

corresponding to a trace from the initial state to a goal state g ∈ G with non-

zero probability for the model defined by the description MD. From the definition

of landmarks, we know that there must be state sf in the sequence τ such that

f ∈ sf . Therefore any trace with nonzero probability can be decomposed into a

prefix corresponding to the sequence that leads to a landmark state and then the

sequence from landmark state to the final goal. Additionally we can see that the

probability of this trace prefix must be greater than or equal to the probability of the

full trace. Thus for all the traces sampled from a given policy the total probability

of getting to all landmarks states must be higher than that of reaching the final goal.

We can use a similar reasoning to show that the total expected cost of reaching the

landmark states must be less than or equal to the cost of reaching the final goal

state.

The above lemma establishes the fact that problem decomposition through land-

marks underapproximates costs and overapproximates reachability, thus its valid for

all three explanatory properties.

Theorem 9. The domain description transformation FD corresponds to a universally

sound transformation for any model that can be represented by a model description of

the form MD = 〈FD, AD, ID, GD, CD〉

Now coming to the complexity of the transformation, once given a fact landmark

the model transformation can be performed quite effectively.

Proposition 34. For a given fact landmark f and a model description MD, the

domain description transformation FD can be performed in constant time.

This is because you just need to replace the goal description in MD to form the

transformed description. Now coming to the complexity of generating a landmark, the
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problem of finding landmark in general is PSPACE-Complete (Hoffmann et al., 2004).

However, there are classes of landmarks which can be generated more effectively.

One class of such landmarks is the causal landmarks which can be generated in time

polynomial to the size of the model description (Zhu and Givan, 2003).

12.5.5 Local Approximation

The next transformation we will consider is that of local approximations. Local

approximations (Ribeiro et al., 2016), have been successfully used in the context

of explaining machine learning decisions. The basic premise being that the model

being used for explanation need not accurately reflect the entire decision-space, but

only the parts that are relevant to the current query. One could translate the same

intuition into the sequential decision-making settings, and look at creating simpler

representations of the model that focus only on a part of the transition system.

Revisiting our motivating example, through local approximation we can establish the

facts that the robot doesn’t need to talk about any of its skills unrelated to cooking or

baking cakes. Based on the fact that it is in a home, it can also figure out that it can

skip providing any information to the user about it’s ability to use industrial mixers

to make cake batter.

We can describe a local approximation (represented by the transformation FL) for

a set of states Ŝ and a set of actions Â as a function that generates a new model that

conserves the transition probabilities and cost functions related to states and actions

that appear in Ŝ and Â.

Definition 40. For a given model M = 〈S,A, P, C, I,G〉 and a subset of states and

actions Ŝ ⊆ S and Â ⊆ A, a well formed MDP model M′ = 〈S ′, A′, P ′, C ′, I ′, G′〉,

is said to be a local approximation (denoted as FL(M) = M′) if there exists a

mapping from Ŝ to S ′ and from Â to A′ (with a slight abuse of notation we will use
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fL for both the state to state and action to action mapping), such that for any given

states i, j ∈ Ŝ and an action a ∈ Â, we have P (i, a, j) = P ′(fL(i), fL(a)), fL(j)),

C(i, a, j) = C ′(fL(i), fL(a), fL(j)) and there exists a mapping from Ŝ ∩G to G′.

This is a very permissive definition and not all instantiation of the transformation

would necessarily lead to transformations that would lead us to ones that may preserve

explanatory properties. So before, we consider an instance of the transformation, let

us consider a specific subclass of the transformation, one that focuses on cases where

the subset of states and actions consider form a closed transition system ,i.e., all

states reachable from Ŝ under the policy is a subset of Ŝ

Definition 41. A set of states Ŝ and set of actions Â, is said to be closed for a

policy π, if

1. Execution policy in Ŝ, will never lead to a transition to a state outside the set,

i.e., ∀j ∈ S \ Ŝ 6 ∃i ∈ Ŝ and a ∈ â such that P (i, a, j) > 0

2. The set Â covers all actions assigned to states in Ŝ, under the policy π, i.e.,

∀i ∈ Ŝ, π(i) ∈ Â

We will now see how any local transformation defined over a closed set, will result

in universally sound transformation. More formally, we can state this as;

Proposition 35. If the sets Ŝ and Â are closed for a policy π, then ∀i ∈ Ŝ, J ′∗(fL(i)) ≤

Jπ(i) and P ′∗(fL(i)) ≥ P ∗(i), where J ′∗ and P ′∗ are the optimal cost function and the

maxprob probability for the model FL(M).

Proof sketch. This follows directly from the fact that the transformation introduces

no new transitions for states and actions that are part of the set Â and Ŝ. Moreover

the transformation conserves both cost and probabilities for those states and actions.
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This means there exists multiple policies for FL(M) which has the same value and

probability for states in Ŝ as the original policy π. This means the optimal policy

and maxprob policy should lead to policy that are more cheaper and with higher

likelihood of getting the goal. Note that this doesn’t need to be equal as the local

approximations allows for the fact that there may be new actions now applicable in

the states that are part of Ŝ.

Proposition 35 ensures that local approximation results in models that underap-

proximates costs and overapproximates reachability and we can now state the.

Theorem 10. The transformation FL for the given sets Ŝ and Â is a universally

sound transformation for a model M, if,

1. Ŝ and Â are closed with respect to an optimal policy and a MAXPROB policy.

2. I ∈ Ŝ and FL(I) = I ′, where I ′ is the new initial state in the model FL(M).

The fact that the initial state is in Ŝ (and it’s corresponding image remains the

new initial state) and that it satisfies the requirement for Proposition 35 means that

all three explanation properties Pε1 , Pε2 and Pε3 .

Reachability Analysis For Local Approximation

One way to create a local approximation is to perform reachability analysis to remove

actions and fluents guaranteed to be not reachable from the initial state. To identify

the non-reachable fluents we will consider the delete-relaxation of the all outcome

determinization of the original model and try to identify the reachable fluents and

actions by building a relaxed planning graph (Hoffmann and Nebel, 2001). The fluents

and actions not present in the planning graph are removed from the model description.

We will refer to the model description formed through this procedure as F+
L (MD),
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where + denotes the fact that the local approximation relies on a delete relaxation

of the model. First thing to note is that F+
L , can be formed rather efficiently. In

particular, we have

Proposition 36. The new model description F+
L (MD) can be created in time poly-

nomial to the size of the original model description MD.

Proof. This follows from the fact that an all outcome determinization can be gener-

ated in polynomial time. The formation of the relaxed planning graph and subsequent

identification of unreachable fluents and actions can again be performed in time poly-

nomial to the size of the determinized model. With the fluents and actions to be

removed identified, one can form the model description F+
L (MD) again in polyno-

mial time.

Now the fact we need to show is that this model description transformation actu-

ally correspond to a local approximation for a certain subset of states and actions and

moreover this approximation meets the requirements for Theorem 10. In particularly

we will see that the transformation will create a local approximation defined over the

original MDP where the subset of states and actions considered correspond to set of

states that can be formed by the remaining fluent and remaining actions and it is in

fact closed. More formally, we can state

Proposition 37. Let M be the model corresponding to the description MD and

let F+
L (MD) = 〈F̂D, ÂD, ID, GD, CD〉 be the newly formed transformed model such

that, F̂D ⊆ FD and ÂD ⊆ AD. Then the MDP M′ corresponding to the description

F+
L (MD) is a local approximation of the model M, defined over the state and action

subset Ŝ and Â, such that

1. Ŝ corresponds to the state defined by 2|F̂
D| and Â correspond to actions in ÂD

(both of which are subsets of S and A for the model M)
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2. Ŝ and Â meets the requirements specified in Theorem 10

Proof Sketch. Note that the mapping here is an identity mapping from states and

actions in Ŝ and Â to those in the model M′. From the construction of the relaxed

planning graph, every fluent that is true in initial state will be conserved and thus

I must be part of Ŝ. The fact that Ŝ and Â are closed comes from the fact that we

are considering a delete relaxation of an all outcome determinization. This means if

the process removes a state from consideration (i.e. removes a fluent f that is part of

the state), then there exists no non-zero probability trace that can reach that state

from the initial state. Thus the states are closed under any policy not just optimal or

MAXPROB ones. Similarly for actions, the procedure will never remove any action

that is applicable for a state that is part of Ŝ and thus must be closed.

Proposition 37 thus establishes the fact that F+
L also corresponds to a universally

sound transformation.

12.6 Computational Model

One of the remaining components that we have yet to discuss in detail in this

chapter is the function capturing the computational burden placed on the human

to solve a specific task, i.e., the function CompH(·, ·). An exact characterization of

CompH(·, ·) would be hard, since it would require accurately capturing the inferential

capabilities of the human. However, one could still use a number of simpler represen-

tations of CompH(·, ·) to calculate useful representations, some of the possible choices

here include

• Using computational model with psychological fidelity - This could correspond

methods like, the ones that leverage computational implementation of psy-

chological models like prospect theory (Kahneman and Tversky, 2013), use of
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decision-making algorithms that make use of limited memory (Nikolaidis et al.,

2016), use of various models of bounded-rationality including ones from behav-

ioral game theory like the finite nested rational model (Wright and Leyton-

Brown, 2017), etc. However, works in these models are still in preliminary

stages and we are unaware of any existing techniques that could directly be

applied to our problem framework.

• Directly learning CompH - Another possibility might be to directly learn the

CompH function from data collected from human subjects. While we are un-

aware of any method that can currently learn the function of the form we require,

some preliminary work in this direction include those presented by Zhi-Xuan

et al. (2020).

• Using Computational Proxies - While we may not have access to CompH , we

could directly measure the hardness of establishing the explanatory property

using exact and sound methods and measuring the time. While this isn’t ex-

pected to be equal to the actual inferential burden faced by the user, we could

use this as an approximation of the exact value. In addition to exact time taken

by an automated reasoner, one could also use other measures like the size of

description, length of the most likely policy trace, etc.

• Using Human-Subject Studies to Establish Effectiveness of Individual Transfor-

mations - Another method might be to not directly learn CompH , but instead

identify any preference use might have on various types of transformation that

may be applicable for simplifying a given model. Then one could leverage the

preference between the transformations to identify solutions that may be pre-

ferred by the user.

In this chapter, we will mostly focus on the latter two strategies, wherein we will
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look at generating simplified model that are simpler with respect to an automated

reasoner. We also introduce an ordering between the various transformations to be

applied (where the more preferred transformation are applied first). This ordering

between the transformation are determined through a user subject study.

12.7 User Study

We performed an ablation study to establish the effectiveness of individual trans-

formations to help users understand the explanation.

Study Objective: Identify the utility provided by the four transformation classes. We

will compare the effectiveness of an explanation defined over a model containing all

four transformations, against one where one of the transformation operations is miss-

ing.

We will also try to verify the secondary hypothesis

H1: Does the presence of stochasticity in explanatory information reduce the effec-

tiveness of an explanation

We recruited a total of 150 participants through Prolific (Prolific, UK, 2021). The

participants were paid $3.30 for 15 minutes. The study took the form of a timed quiz

(the quiz is automatically submitted at 15 minutes) where they read an explanatory

dialogue and were asked to answer questions related to the explanation. There was

also a bonus of $5 offered to the top two fastest participants from a group, who get all

the answers right (thus ensuring that people optimize for both completion time and

correctness). We required that the participants were fluent in English and it was their

first language. 75% of the participants were from the US. For the maximum educa-

tion degree completed: 28% of all the participants who attempted the test (including

those who dropped out in the middle) reported having a Bachelor’s degree, 21% a

high school degree, 17% having some college credits, and 15% having a master’s de-
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all -determin -locl-apprx -decomp -abs

# Filtered 27 27 27 24 24

% satisfaction 85.18 81.48 81.48 66.66 66.66

Participants with correct answers 22 23 24 17 20

Avg Time Taken 237.59 ∓26 281.45∓48 299.6∓46 249.06 ∓40 391.75∓73

T-test against all - 0.096 0.0288 0.343 0.0017

Table 12.1: Summary of User Study Results. Average Time Reported Is with 95%

Confidence Interval. Last Row Reports the P-value Calculated from a Two Tailed

Homoscedastic T-test

gree. In the group corresponding to all-but-determinization, 88% of participants

reported that they understood probabilities. The study was performed on a simple

travel planning domain, where the goal is to let the person board a flight. The domain

consists of 11 actions, four of which have stochastic effects. We start with a model

that contains all the transformations. It projects out all but six propositional fluents,

has a subgoal of getting to the terminal, is determinized, and uses a regression-based

local-approximation method to prune out actions that can’t possibly contribute to

the goal of getting to the terminal. The actual explanatory dialogue consists of a

system stating the estimated time taken to reach the final destination (time being

a stand-in for cost) and the user in the dialogue asking why it can’t be done in an

hour. The explanation consists of a description of the corresponding simplified model

(generated by filling templates with descriptions of the propositions) and a single

execution trace as the explanatory witness. The user is asked to read this dialogue

and asked to answer a series of questions. Two questions of particular interest are

a filter question that just checks whether the participant read the instructions and

then a question that tests whether the user understood the explanation, by asking

how they could speed up the travel plan. For the second question, the participant
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was given five options, only two of which are correct answers. One of which requires

the participant to understand the current plan and the second requires them to rea-

son about an alternate initial state. We ignored any participant who got the filter

question wrong.

The five conditions we considered were (A) all - A condition consisting of a model

that includes all four transformations, here the main explanatory text (model descrip-

tion plus explanatory witness) included 1493 characters. (B) all-but-determinization

- as the name suggests all transformations except determinization are applied, the

explatory text included 1805 characters. (C) all-but-local-approximation - the

explanatory text includes 2274 character. (D) all-but-decomposition - the ex-

planatory text includes 2429 characters. This group has the same model description

as all-but-local-approximation, but the explanatory witness is longer (as opposed

to just talking about reaching terminal A the trace takes you all the way to boarding

the flight). (E) all-but-abstraction - the explanatory text includes 3,211 characters.

We considered 30 participants per condition.

We measure the effectiveness of explanation both on a subjective level (do peo-

ple find the explanation satisfying?) and on an objective one (do people find the

explanations helpful?). We measure the former by directly asking the participants if

they found the explanations satisfying and the latter by checking whether they found

correct answers and how long they took to find those answers. Table 12.1, presents

the results of the user study. The first interesting result to note is the fact that the

transformation, whose removal makes the most difference seems to be the state ab-

straction. It causes a marked reduction in both subjective and objective front. The p

value calculated from the t test ( can be roughly interpreted as the probability that

the samples come from the same population) is 0.0017. Which is lower than standard

significance levels (α = 0.05) used to establish statistical significance. Apart from
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this primary observation, the results also point to a number of other phenomena.

In regards to H1, we see that the use of probabilities seems to introduce a drop in

the number of people who reported they are satisfied with the explanation, as com-

pared to the condition all and more interestingly comparable to a condition that was

actually more verbose (all-but-local-approximation). We also see an increase in

time taken for probabilities against all and also against a more verbose condition (all-

but-local-approximation). All these seem to point to the fact that the H1 holds

even in this simple scenario where the abstraction and local approximation removes

half of the probabilistic actions. Another interesting point is the difference between

all-but-local-approximation and all-but-decomposition. They are near identi-

cal in the size of the explanation, but in one, you are asked to reason about a longer

horizon (i.e. all-but-decomposition), and in the other, you have unnecessary ac-

tions that don’t contribute to the goal being explained against (i.e. reaching the

terminal). We see that in all-but-local-approximation a lot of people are able to

solve the problem but at the cost of much higher time (the statistical test between

the time taken under condition all and all-but-local-approximation is again un-

der the significance level of 0.05). One possible explanation for the higher time could

be the selectivity principle that has been discussed in that extra time need to be

spent sifting through the unrelated details (Miller, 2017a). While in the case of all-

but-decomposition, there are no irrelevant details but possibly the longer planning

horizon is leading to people overlooking or making mistakes during reasoning.

Takeaways. The results show the utility of abstraction, particularly when it results

in a considerable reduction in model size. Though one can’t just rely on model-

description sizes, as the comparison between all-but-local-approximation and all-

but-decomposition shows there are multiple other factors that could influence the

utility of a transformation.
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12.8 Stratified Search

Now let us return back to the question of how to effectively generate the transfor-

mation sequences. Even if we limit our transformation classes to the one we discussed

in Section 12.5, a search for the minimal transformation sequence using Algorithm 8

would be an expensive problem. For one the search space could be large and even

if one were to introduce a more informed version of the search any search heuristic

we employ will have to compute the effect of a transformation on the computational

hardness of the problem. A more useful approach may be to set up a hard priority

between the transformation classes. If we are able to set a primary transformation

class, then we can directly try to find the maximal number of transformations we

can apply from that class. The other transformations need only be considered to

the degree that they can be applied to the models generated by applying a maximal

sequence of primary transformations possible. An excellent candidate for primary

transformation is state abstractions, which are demonstrated both by our user stud-

ies (Section 12.7) and makes sense from a computational point of view. After all,

removing each binary state fluent reduces the state space by half. Among the most

abstract models that support the given explanatory query, we can look at applying

the other transformations provided they improve the secondary characteristics under

consideration.

However, one could also additionally exploit the specifics of the transformations to

get additional improvement in search. Starting with state abstraction transformation

(FF\·), there are two immediate properties we can exploit, namely the fact that the

transformation is commutative and compositional, or more formally

Proposition 38. For any modelMD and for any proposition set F̂1 ⊆ F and F̂2 ⊆ F ,

we have
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1. FF\F̂1
(FF\F̂2

(MD)) and FF\F̂2
(FF\F̂1

(MD), i.e. the state abstraction transfor-

mation is commutative

2. FF\F̂1
(FF\F̂2

(MD) and FF\(F̂1∪F̂2)(MD), i.e. the state abstraction transforma-

tion is compositional

Proposition 38 follows directly from the definition and implies that we can apply

state abstraction one fluent at a time and can be applied in any order.

Next moving onto the next three transformations, we see another fascinating prop-

erty. Namely that the order in which the determinization (F∆) and subgoal decom-

position (FD) is applied doesn’t matter. Similarly, the applying determinization and

local approximation via reachability analyses (F+
L ) in any order also results in the

same model. However, applying local approximation after subgoal decomposition is

always guaranteed to result in removal of more elements, more formally,

Proposition 39. For any model MD

1. F∆(FD(MD)) = FD(F∆(MD)) and F∆(F+
L (MD)) = F+

L (F∆(MD))

2. If M ′ = F+
L (FD(MD)), M

′′
= FD(F+

L (MD)), then we can guarantee that F ′ ⊆

F
′′

and A′ ⊆ A
′′
.

Proof. The first result follows from the facts that (a) determinization will not change

the goal description and subgoal decomposition only changes the goal description and

thus are independent of each other and (b) the reachability is already calculated on an

all outcome determinization of the model. For the second result, remember that the

relaxed planning graph is always only built until the goal is achieved, as such using a

subgoal that is easier to reach could let us prune out more actions and fluents.

Algorithm 9 presents the pseudo-code for the stratified search. The algorithm

starts with the most abstract model (which only includes the goal fluents) and then
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searches for the minimal number of fluents to be introduced into the model so that the

query property P is satisfied. Let Compsys be the computational proxy we are using.

The successor procedure will only consider generating a model generated through

Algorithm 9 Stratified Search
1: procedure search

2: Input : MD,P,F, C

3: Output : Updated model description M̂D

4: Procedure:

5: λ = FD \GD

6: curr model = FF\λ(MD)

7: Fringe.push(curr model) (Where Fringe is a Queue)

8: Cmin =∞

9: Abs min = |FD|

10: while Fringe is not empty do

11: curr model = Fringe.pop()

12: Property holds = False

13: if test property(curr model,P) then

14: Property holds = True

15: if Abs min is less than number of fluents in curr model then

16: set Abs min to number of fluents in curr model

17: Cnew = Compsys(curr model,P)

18: if Cmin > Cnew then

19: Cmin = Cnew

20: best model = curr model

21: Fringe.push(successor(curr model, F, Abs min, Property holds))

22: if test property(F∆(best model)) then

23: best model ← F∆(best model)

24: if test property(FD(best model)) then

25: best model ← FD(best model)

26: if test property(F+
L (best model)) then

27: best model ← F+
L (best model)

return best model

non-concretization transformation (i.e. transformation that adds new fluents in the

model) if the number of fluents in the model is equal to Abs min and the property

holds in the model. Abs min starts initialized to the total number of fluents in the
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original model, but as soon as an abstract model is found then Abs min gets set to

the number of fluents in the model. After that, the search will keep concretizing the

models to the same level of abstraction (in terms of the number of fluents) and then

try to see if further transformations help improve the secondary characteristic being

optimized for.

12.9 Synthetic Experiments

Here we will look at the ability of Stratified search to generate simplified models.

Here the performance of the simplified model is measured by the time taken to solve

the problem using standard solvers and the size of the description. We considered

three different solvers, a MAXPROB solver (Klößner et al., 2021), an implementa-

tion of LAO* solver (Hansen and Zilberstein, 2001) for SSP problems (for the cost

queries) and the fast-downward planner (ran with A* search and LM-cut heuristic)

for deterministic problems (Helmert, 2006). The problems were tested on problems

from IPPC problems from 2006 and 2008 (Bryce and Buffet, 2008) and some ad-

ditional problems for unsolvability. We tested problems corresponding to all three

property classes. For property corresponding to cost (i.e. PE1) we only consider do-

mains which is guaranteed to have proper policies (i.e. goal achievement probability

is 1). For each domain considered, we selected only problems that could be solved

by the solvers within 30 minutes and was appropriate for the specific property (i.e.

was unsolvable for PE2 and had the max probability of less than 1 for PE3). Since

we are unaware of any unsolvability benchmarks (for property PE2) for probabilistic

planning, we took a deterministic domain (from Hoffmann et al. (2014)) and turned

them into probabilistic domains by randomly changing some of the add effects to

stochastic effect with probability 0.5. For PE1) we created the query by considering

the cost threshold to be 5 (note the SSP solver ignores action cost) and for PE3) we
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Property Domain Problem

Count

Original

Prob Size

Average

Simplified

Prob Size

Average

Solver

Time of

Original

Model

Average

Solver

Time of

Simplified

Model

PE1 Blocksworld 5 67.4 25.4 1.647 1.22

Elevators 12 75.36 7.86 58.01 1.09

Zenotravel 5 81 26.2 534.06 1.26

PE2 Bottleneck 12 145 116.25 60.38 1.62

PE3 Horizon Con-

strained

Blocksworld

5 115 63.2 1.03 0.88

Dirve 15 421.53 51 0.06 0.13

Exploding

Blocksworld

9 77.44 19.11 53.59 0.17

Table 12.2: The Results of The Simulated Experiments

used a probability threshold of 1. We also used a constrained version of Blocksworld

domain for PE3 that was introduced by (Klößner et al., 2021). As clear from Ta-

ble 12.2 shows in everyday domain the transformation results in a smaller domain

and in all but constrained blocksworld domain, results in shorter solution time. All

experiments were run on an Ubuntu 14.04 machine with 12 cores and 64 GB Ram.

12.10 Related Works

While XAI as a field has been getting a lot of attention (Lakkaraju et al., 2020),

explaining sequential decisions is relatively under explored. Though there is a growing

recognition that explaining sequential decisions presents unique challenges. Particu-

larly there has been a number of recent works that have looked at explaining visual

RL agents (for a recent survey for RL explanations in general please refer to (Alharin

et al., 2020)). A lot of explanation works from the RL space seem to focus either on
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feature attribution explanation (cf. (Greydanus et al., 2018; Huber and André, 2019))

or generating policy summaries (cf. (Topin and Veloso, 2019; Hayes and Shah, 2017;

Amir and Amir, 2018; Lage et al., 2019; Koul et al., 2019)). Most of the works that try

to answer ‘why’ a specific decision was made, focus on the choice of a specific action at

a state (while keeping the rest of the policy the same) (c.f (Lin et al., 2021; Khan et al.,

2009; Juozapaitis et al., 2019)) rather than contrasting the current policy/behavior

over whole behaviors/alternate policies. In regards to explanations for model-based

sequential decisions, Chakraborti et al. (2020) presents a rather comprehensive survey

(the thesis also presents a parallel survey in Chapter 22). As mentioned most work in

model simplification for explanations comes from deterministic planning community.

With state abstraction being a popular method investigated by (Sreedharan et al.,

2021d) and (Sreedharan et al., 2019b) (many placed in the framework of model rec-

onciliation (Chakraborti et al., 2017)). (Sreedharan et al., 2020b) also tried to use

the ideas from these papers in the context of FOND planning (Cimatti et al., 2003).

(Sreedharan et al., 2019b) also talks about finding the first unsolvable subgoal. There

are also works that try to map inscrutable black box models into models expressed in

terms of interpretable features or force RL algorithms to use interpretable features.

Representative works in this direction include (Lin et al., 2021; Sreedharan et al.,

2022c; Waa et al., 2018). Though unless these new features are hand-selected they

don’t necessarily have to lead to simpler models. In addition to XAI works, the trans-

formation methods used here also have roots in generating model approximations to

speed up planning and generating heuristics. Some relevant works include those by

Srivastava et al. (2016); Van Roy (2006); Klößner et al. (2021); Givan et al. (2000)

for abstraction, Richter and Westphal (2010) for landmarks, Yoon et al. (2007) for

determinization.

One of the points just referred to, but not expanded upon was the use of model

283



class simplification transformation. One example is the method discussed by Eifler

et al. (2020a), where the generate contrastive explanation generation for the oversub-

scription planning problem. Here the explanation provides the various constraints

between the different possible objectives. We could see these works as performing

model class simplification, where they effectively convert a multi-objective planning

problem into a constraint satisfaction problem where there are specified constraints

among various objectives. A similar approach was also followed by Sukkerd et al.

(2018, 2020).

Table 12.3 and 12.4, presents some example works from the explanation for sequential-

decision-making literature that uses explanatory witnesses and the type of information

provided by each. Note that most works that use some form of proof-based explana-

tory witness do so by skipping some information from the proof. For example, to

establish the choice of one action over another they may report the Q values of the

other actions without establishing why the Q values of the other actions have those

specific values. As such we have referred to the information generated from these

works as Abstract proof.

12.11 Concluding Remarks

This chapter presents a framework for generating a simplified model representation

for the purposes of explanation. In particular, we look at transformations over model

descriptions that preserve some property being queried by the user. As part of defining

this framework, we also establish the space of possible explanatory properties that

can be queried by the user in this setting, perform analysis over some general class

of transformations and formalize the idea of explanatory witness. We perform user

studies to validate the specific transformations studied in the chapter. Our user

study results show that the transformations do help improve comprehensibility of the
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Paper Type of Witness Actual Information

(Seegebarth et al., 2012; Bercher et al., 2014) Existential Information Causal chains

(Sreedharan et al., 2018c) Proof Discusses providing

plan trace and failure

points of the foils

(Sreedharan et al., 2019b) Abstract Proof Unreachable subgoal

(Göbelbecker et al., 2010) Counterfactual Information Alternative Initial

state

(Khan et al., 2009) Abstract Proof Reachability informa-

tion under current pol-

icy

(Dodson et al., 2013) Existential Information Provides action fac-

tored differential values

- Describes how much

better the actions are

in the next state given

the current optimal ac-

tion in comparison to

the other actions.

(Madumal et al., 2020b) Existential Information They contrast the out-

comes of two actions

over an action influence

diagram, which is a

modified form of struc-

tural causal model

(Krarup et al., 2021, 2019) Existential Information Produces a plan that

satisfy the user speci-

fied alternative

(Lin et al., 2021) Abstract Proof The preference of one

action over another is

represented in terms of

some accumulation of

the policy execution af-

ter the current action

(as opposed to the foil

case)

Table 12.3: Some Examples of Explanatory Witness Used in the Literature (Part 1).
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Paper Type of Witness Actual Information

(Juozapaitis et al., 2019) Abstract Proof The model consists of an interpretable value

function, where the value is decomposed

into multiple human interpretable compo-

nents. Thus the auxiliary information consists

of comparing the values across these compo-

nents.

(Madumal et al., 2020a) Existential Information Here explanation includes opportunity chains,

i.e., information derived from a decision-tree

based representation of policies and also the

information part of (Madumal et al., 2020b)

(Waa et al., 2018) Existential Information Describes the negative outcomes that occur as

part of the foil

(Valmeekam et al., 2020) Abstract Proof Provides the closest plan that may be feasible,

conflict set and most likely set of actions that

can be satisfied

(Kasenberg et al., 2020) Existential Information If the queried formula (φ) could have been

achieved, it generates a trajectory that satis-

fied φ and presents the outcome of following

that trajectory

(Olson et al., 2019) Counterfactual Information Counterfactual states

Table 12.4: Some Examples of Explanatory Witness Used in the Literature (Part 2).

explanations. Though we can’t just rely on computational intuitions to decide the

most useful transformations. Thus more work needs to be done in both identifying the

strengths of these transformations and even developing novel transformations better

suited for explanations.

286



Part III

ADDRESSING VOCABULARY

ASYMMETRY
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Chapter 13

PART-III OVERVIEW

In the last two parts of the thesis, we look at the two dimensions of explanations

that could correspond to the reason why the user may be confused by the decisions

being made by the system. We also saw, how in each case we could try to provide

information about the robot’s model to update the human mental model and by

extension their expectation about robot behavior. However, each method discussed

in the previous chapters makes one common assumption, namely that the robot can

provide the information in a form the user can understand. In fact, most of the time

we made the implicit assumption that the robot’s own model is already specified

in a form that can be understood by the human. This need not always be true,

especially if the robot is using a learned model. In such cases, the robot’s native

model may be represented in a form that may be inscrutable to the human. As such,

the explanation system would first need to translate the robot model to terms the

user can understand before it can be presented to the user. This part of the thesis

will focus on methods that are designed to generate explanations in the presence of

such vocabulary mismatch between the robot and the user.

13.1 Structure for Part III and Technical Contributions

This part will be divided into two chapters

1. Chapter 14: This chapter will introduce the basic problem of vocabulary mis-

match and present the case for using post hoc learned symbolic models as the

basis for generating explanations in the presence of such asymmetry. This chap-
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ter will be particularly focused on highlighting some of the central research chal-

lenges related to this direction. It will also layout a research agenda for future

works related to addressing vocabulary mismatch.

2. Chapter 15: In this chapter, we will look at a specific explanation generation

method that will try to address many of the challenges outlined in the previous

chapter. In particular, we will look at the most basic contrastive explanation

setting, where the agent presents a solution and the human raises an alternative

plan they were expecting. The method will assume they have access to a set of

predefined concepts that the human understands and use those concepts as the

basis for constructing symbolic model fragments that could act as the basis for

the explanation to the user. The method also allows for a way to quantify any

uncertainty the agent may have about the post-hoc model it constructed. The

chapter will also present the results from a user study that we ran to compare

the effectiveness of post hoc symbolic explanation against methods like saliency

maps.

13.2 Important Takeaways

One of the takeaways from the current method presented in Chapter 15, is the ac-

cess to potential concepts the human understands. Going forward, effective methods

to address vocabulary mismatch would require us to develop more efficient methods

for vocabulary acquisition and as Chapter 14 discussed methods to teach new con-

cepts to humans. In regards to connections to wider XAI, we can see many methods

from explainable machine learning adopting similar methods. The obvious one being

TCAV (Kim et al., 2018), however even methods like LIME (Ribeiro et al., 2016)

are trying to bridge vocabulary differences when it is making use of alternative fea-
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tures like superpixels. Even outside the context of explanation generation, the need

to bridge the vocabulary mismatch has been highlighted as a requirement for more

effective human-AI collaboration (Kambhampati et al., 2022) and as a requirement

for value-alignment (Kim, 2022).
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Chapter 14

ADDRESSING VOCABULARY MISMATCH THROUGH POST HOC LEARNED

PDDL MODELS

In this chapter, we will look at the basic problem of vocabulary mismatch and present

a case for using post hoc learned symbolic models as the basis for generating explana-

tions in the presence of vocabulary mismatch. In particular, we will make the case for

using PDDL style action centered model descriptions as the basis for such symbolic

representations. The reason for considering PDDL-like representations for the model

is multifold. For one, models like PDDL provide a very intuitive representation for

planning problems as they are built around concepts from folk psychology (Miller,

2017a). Secondly, once we have a PDDL representation for the task, we can leverage

many of the existing methods for explanation generation that have been developed

specifically for PDDL like models (many of which are covered in this thesis). In the

end, this work follows a growing consensus that while it is unclear whether AI sys-

tems themselves would need to use symbols in their internal processing for effective

decision-making, there is no doubt that people are comfortable with and expect to

communicate with these systems in terms of symbols that are meaningful to them.

PDDL provides a particularly expressive, intuitive, and well-studied representation

for sequential decision-making problems which could be used for such communication

purposes.

14.1 Vocabulary Mismatch

We will start by defining vocabulary mismatch
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Definition 42. Consider a robot model MR and the corresponding human mental

model MR
h , such that there exists a mapping FH from MR states (SM

R
) to MR

h

states SM
R
h . Where FH(s) is a state in SM

R
h that corresponds to state s ∈ SMR

and

we have FH(IM
R

) = IM
R
h . In this setting, a vocabulary mismatch is said to exist

between the two models if one of the following conditions are met

1. |FMR
∆FM

R
h | > 0

2. |AMR
∆AM

R
h | > 0

3. ∃f ∈ (FM
R ∩ FMR

h ) and s ∈ SMR
, Such that f ∈ (s ∆ FH(s))

The above definition, lays out two broad reasons for the existence of a vocabulary

mismatch between the robot and the human model. First off, the robot or human

model contains fluents or actions the other model doesn’t contain (corresponds to

conditions 1 and 2). An immediate consequence of this mismatch is the fact that

we can no longer define the model parameterization function Γ (Definition 1) which

requires a common fluent and action label space. This makes the communications of

model information challenging.

The second and more nefarious way in which a vocabulary mismatch may manifest

is through a difference in fluent grounding. In other words, both models may contain

the same fluent label though they may refer to different things. In the above definition,

this is denoted by cases where there are states whose representation in the robot and

human model may use different fluents.

The above definition presents the basic version of the vocabulary mismatch prob-

lem when the robot model corresponds to a symbolic model. However, in many cases

the robot model in its native form may correspond to a simulator or the individ-

ual model components may be represented by parameterized functions or inscrutable

neural networks.
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Figure 14.1: The Diagrammatic Representation of the Various Steps Involved in the

Generation of Post Hoc Symbolic Explanations. The Explanatory Process Starts

with the End User Specifying a Set of Vocabulary Terms They Understand and an

Explanatory Query. The System Then Uses the Query along with the Specified

Vocabulary to Create a Model Approximation of the Actual Model Used by the

System.

Our general strategy to address vocabulary mismatch as laid out in this chapter

and the next would be to relearn a representation of the robot model (or at least parts

of the model) using the fluent, action labels and the fluent groundings that are part

of the human model. We can then use this newly learned model to provide various

explanations to the human.

14.2 Post Hoc Symbolic Explanation

Figure 14.1, presents an overview of the learning/explanation generation process

that could be used to generate such post symbolic explanations. The overall process

starts with the user of the system providing a set of vocabulary items (i.e. labels for

actions and state fluents that the user understands) and an explanatory query (for

example a contrastive query (Miller, 2017a)). Within the context of an AI system,
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the user described here could correspond to people interacting with the system under

many capacities, including system designers, end-users, and even domain experts. In

this chapter, we will mostly be agnostic to the specific user types, though one could

easily see the role and background of the user could change the type of approaches

used in each step. Also in the most general cases, the one specifying the vocabulary

and the one raising the query need not be the same, but we will also ignore this

distinction for now. With the vocabulary set and the query in place, the explanation

generation procedure can interact with the actual system to generate a symbolic

approximation that is sufficient to provide a response to the current query. If the

system fails to identify an appropriate explanation, this is a good indicator that the

original vocabulary set is incomplete and would require additional vocabulary items

to create a higher fidelity symbolic model to generate the required explanations. In

the rest of the section, we will look at each of these individual steps of the overall

flow. One of the requirements for this method is the ability to leverage the internal

models of the agent. Here we are using the term model in a very general sense.

These could correspond to learned models being used by the agent (for example

neural network models learned over latent state representations), procedural models,

internal simulators, or even non-parametric models consisting of original experience

being used by the agent to form its policy. The only requirement we place on the

model is that we are able to interact with it and potentially sample experiences from

it. In regards to the symbolic model, we will generally assume some variant of PDDL.

14.2.1 Vocabulary Learning

One of the core research challenges we are trying to address here is that of vocab-

ulary mismatch. Plainly put, we need to overcome the fact that the system may be

reasoning about the task in terms that a user of the desired background may not un-
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derstand. Thus, mapping these models into any symbolic representation isn’t enough

as these may still be defined in terms that carry no real significance to the users.

After all, a single atomic transition system could be synthesized from quite a differ-

ent set of PDDL models, defined over various state factors. This makes many of the

automatic model synthesis methods like that from Bonet and Geffner (2019) or Asai

and Fukunaga (2018), which also try to automatically generate symbols, ill-suited for

our purposes. One of our core proposals in this chapter is the need to include human

input in some stage of the learning pipeline to determine the factors on which the

model will be built. Basically, we would need people to specify at least parts of the

action space and the state fluents over which the model would be learned. The core

requirement for each vocabulary item is for the system to learn a way in which it

can detect when the state contains a specific fluent value or when the action (or a

trajectory) performed by the agent corresponds to an action specified by the user.

One way to represent such mappings from system representations to human vocab-

ulary items would be to learn binary classifiers for each item from data collected by

interacting with the user. In general, all the data collection strategies discussed below

will assume that the user can visually observe the current state and agent actions.

This doesn’t necessarily mean the agent actually reasons about the world in terms

of raw visual information. It may well be that the human can observe an embodied

agent acting in the world or the agent can expose some visual representation of its

internal state (like in the case of ATARI agents, where the agent presents a visual

representation of its ram state).

Actions The first obvious task would be to let the system identify the set of actions.

This would be relatively straightforward in many RL tasks, including games where

the action set of the original problem set is limited, and there exists a natural label
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of each of the possible actions. Though for many domains like robotics, the actual

action space may be too complex (or even continuous) for the human to identify each

action name. Instead, the human may think about the agent’s action in terms of

temporally extended actions (compared to the original actions). So instead of a series

of joint angle changes, they may instead think in terms of abstract actions like picking

and putting down objects. The person could communicate such abstract actions by

labeling a set of agent demonstrations or by even providing demonstrations for each

action. In either case, one could obtain a sequence of trajectories that correspond

to each higher-level action, and one could learn classifiers that map trajectories to

high-level action labels.

Fluents The other vocabulary item of interest to us is the state fluents. This could

consist of propositional or relational factors the user believes is relevant to the given

task. In the case of propositional fluents, the user could specify the set of important

fluents to the system by providing a set of states where the fluent is true and a set

of states where the fluent is false. These examples could then later be used to train

classifiers for each concept. For relational concepts, the user could start by labeling

relevant objects and then, similar to the propositional case, provide positive and

negative examples for each predicate of interest.

Note that a core flexibility provided by the setting is the fact that it allows the

original vocabulary set provided by the user to be incomplete. This makes it a funda-

mentally different enterprise from all the other works that try to force the decision-

making algorithms to use interpretable features (cf. (Koh et al., 2020) for single-step

decision making, and (Lin et al., 2021) for sequential problems). On the one hand,

these methods can guarantee that the system is considering these features, on the

other, they are also inherently limited by the original vocabulary set. It can do no
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better than what is possible under the original vocabulary set. In contrast, under this

method, the system is free to choose the best representation of the problem that al-

lows it to come up with solutions efficiently. While this is still a widely debated topic,

at least the dogma in mainstream RL seem to be that while symbolic representations

are useful for end-users to understand and interact with the system, forcing the sys-

tem to reason over human-engineered representations and knowledge would hamper

the system in many practical scenarios as they preclude the use of more general and

scalable methods (cf. (Sutton, 2019; Silver et al., 2021)). In this case, vocabulary is

only used for explanations. Additionally, given the fact that the system has access

to the more complex internal model, the explanatory system is also able to tell when

the given vocabulary set is insufficient to explain the given decision. Once the system

has detected this, it can query the user for more vocabulary items. We would expect

the system should to do it in a directed way, though performing directed concept

acquisition is very much an open problem.

14.2.2 Model Learning

The next important aspect of the entire process is to take the vocabulary item

and try to build a symbolic approximation of the overall model. There are multiple

ways one could go about learning the models. One might be to generate a bunch of

plan traces, use the learned vocabulary items to match into symbolic terms, and then

use any of the existing model learning methods (cf. (Stern and Juba, 2017)) to learn

the final model. Alternatively, one could also employ a more active learning process

in which the agent actively interacts with the environment until it finds a model that

meets the required criteria (this is similar to the strategy employed by Chapter 15).

Given all the existing work, we won’t delve too much into the learning problem itself

but rather look at some of the more unique possibilities that arise in this specific
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problem setting.

Local Approximations: While there aren’t many explanation generation methods

for sequential-decision making problems that look at post hoc explanations (partic-

ularly ones that try to build alternate models), post hoc representation learning is a

very popular method in generating explanations for single shot decisions (Lakkaraju

et al., 2020). A common technique used by many of these methods to simplify the

explanations is to focus on creating local approximations of the original models. Pop-

ularized by Ribeiro et al. (2016), under this technique, rather than generating post hoc

models that try to approximate the full model, they try only to capture the behavior

of the model in a region of interest over the input space. Usually, this may correspond

to data points close to the one that needs to be explained. We can translate the idea

of local approximations also to our setting, where we can choose to learn a symbolic

model that approximates the true model only for a subset of states and actions. The

next natural question would be how to decide this set of actions. One approach would

be to follow Ribeiro et al. (2016) and the earlier machine learning explanation works

and choose distance as the deciding factor. In particular, consider only states within

some distance from the initial state or the states in the current plan, and consider only

actions that are possible in those states. A very natural distance measure for plan-

ning problems would be reachability or, in particular, reachability within a specified

number of steps. Though rather than just blindly focusing on reachability/distance,

one could also select the state and action subset more effectively if we are aware of

the user’s intentions for asking the query. For the previously discussed use case, if we

restrict reachability to only states that are part of screen 1, the precondition becomes

not next to skull (as Joe can’t acquire a sword in that screen).
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Learning Abstract Models vs Model Components: Unlike the traditional use

cases of learning planning models, here, we may not need to learn the entire model.

Instead, depending on the explanatory query, we may need to only learn an abstract

version of the model or even just identify parts of the model. For example, the meth-

ods discussed in Chapter 15 looks at identifying explanations meant to refute alternate

plans provided by the user. In this case, they identify only the required preconditions

and an abstraction of the cost functions needed to refute the user queries.

Post Hoc Explanatory Confidence: Another important factor that is worth con-

sidering in this setting is measuring how accurately the learned model approximates

the system model. Unless the explanatory system is exhaustively generating all pos-

sible transitions and behavior possible in the region of interest, there is a possibility

that the learned model may not accurately reflect the actual behavior. If the model

is wildly different from the true model, it could end up inducing incorrect beliefs in

the end-user about the task and the system’s understanding of the task. One way to

try addressing such issues may be to provide the system with the ability to quantify

its uncertainty about the model. Then it could use those measures to decide when

it may be safe to provide explanations or even surface its uncertainty to the end-

user. While there are some existing works on quantifying PAC guarantees for model

learning (Stern and Juba, 2017), this generally is an underexplored problem. Addi-

tionally, if the learned vocabulary mapping (from system’s representation to user’s

vocabulary) is noisy, the symbolic traces that the explanation system collects may be

incorrect and this should also be reflected in the confidence it assigns to the learned

model. Chapter 15 presents some methods for creating such confidence measures

under certain assumptions about the task.
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Reusing Previously Learned Model Components: In the end, interacting with

the complete model will be an expensive process and we would want to avoid perform-

ing this unless it is completely required. This means, being able to recognize cases

where any new queries raised by the user can be resolved by a previously learned model

representation. Also developing methods that are able to stitch together previously

learned model components and abstractions to more complete model representations

and checking if they suffice to address the user queries.

14.2.3 Explanation Generation

We won’t delve too much into the exact explanation methods that could be used

to generate the target explanations. But will bring up the two factors that may be

worth considering in this question.

Explanatory Queries: As mentioned earlier the model learning is driven by the

explanatory query. Keeping with most mainstream works in XAIP, we will assume

most of these queries are contrastive in the sense that the user is trying to understand

why a specific decision was made against a possible alternate decision the human was

expecting. Though in this case, we have to make an additional level of distinction,

namely what the explanation is trying to establish why the current decision is better

than the alternative raised by the user, or why and how the system decided to make

the decision. This was a distinction established in Langley (2019), where the author

refers to the former as preference accounts and the latter as process accounts. The

post hoc explanatory methods are particularly well suited for preference accounts. As

they can be evaluated on these post hoc models independent of the original decision-

making process used to derive the system’s decisions.
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Identifying When the Model is Incomplete: The next important feature re-

quired for the explanation generation, is to explicitly allow for the fact that the model

being used to generate the explanation may be incomplete. So the explanation gener-

ation method needs to be able to identify cases where the current learned model may

be incapable of generating the required explanation and as such the system needs to

query the user to acquire new vocabulary items which may be used to augment the

given model. Access to a system model could be extremely useful in such scenar-

ios, particularly for evaluating user-specified alternatives in the context of contrastive

queries. As the system model could be used to test the validity and cost of these

alternatives.

14.3 Research Challenges and Opportunities

This section will discuss some of the big open questions and research opportunities

posed by this direction. This is in addition to smaller problems like tailoring expla-

nations to specific types of models that may be popular in fields like RL, considering

stochastic models, etc.

Acquiring new Concepts: One of the open challenges is to address cases where

the original vocabulary set is incomplete. The agent now needs to query the human to

expand its vocabulary. One obvious strategy may be to ask for more concepts, though

this could be a very inefficient way to collect more concepts as the ones the human

may provide may be completely irrelevant to the given problem. An advantage the

agent has is that it has access to its own representation of the task and thus may

be able to provide some hints to the human as to what concepts may be relevant to

the current query. One way to accomplish this may be to leverage low-level visual

explanations (when a common visual channel is available). While we are unaware
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of any works in sequential-decision explanation that have leveraged such methods to

collect concepts, a closely related work that has looked at collecting such concepts

is the method presented by Hamidi-Haines et al. (2018), where they developed an

interface that allows users to name certain regions of the state highlighted according

to their relevance to the decision-making process. One would want to build on such

interfaces for more general sequential decision-making systems and also possibly relax

various assumptions like the fact that each concept corresponds to specific parts of

the image. Another possibility is to revisit the end-to-end model learning methods

similar to Bonet and Geffner (2019), that also learns symbols. An open research

question here is developing methods that check if any of the automatically discovered

concepts or composition of such concepts could potentially map to concepts at the

user’s end. Additionally, we could also check if one could introduce inductive biases

into these systems that allow the generation of naturally interpretable concepts (Yeh

et al. (2020) discussed how the assumption of the locality could be used in single-shot

decisions).

Incorporating Possible Noisy Decision-Making: One of the questions that

we have ignored in this chapter is whether the agent’s decision-making process can

correctly use their internal model. Even in the best case, the symbolic models will

only reflect what is present in the internal model. Though given the realities of

the state of the art RL methods, in many cases, it is hard to guarantee that the

decision-making processes can correctly use their own internal models to generate

their decisions. If, in fact, these explanations are presented as the reasoning behind

the agent’s decisions (i.e., a process account per Langley (2019)), it could lead to the

user forming incorrect beliefs about the agent’s reasoning capabilities. It is still very

much an open question how we could leverage the specifics of the agent’s decision-

302



making processes to select more precise explanations. Some initial strategies we could

employ include performing additional tests like checking whether perturbation of some

concept identified as part of the explanation in the current state leads to the system

choosing a different action, or using the system’s own internal representations (for

example, looking at intermediate layer activations in the case of neural networks) to

build concept classifiers, etc.

Allowing For Collaboration: We strongly believe that explanatory systems should

be evaluated in the context of the overall application. A common use case for such

systems may be scenarios where the user and the system are collaborating to come

up with better solutions (as in the case of iterative planning (Smith, 2012)). In the

most general case, we would want this to be a bidirectional interaction wherein both

the agent and the human can influence each other’s beliefs on what constitutes an

ideal solution. While there have been recent works on developing methods that allow

people to specify preferences/objectives for agent behavior (cf. (Illanes et al., 2020;

De Giacomo et al., 2019)), they have generally focused only on developing interfaces

to let the user specify constraints over the behavior the agent can generate using its

internal models. For these systems to be truly successful, we need to not only allow

the agent to provide explanations over why it may be performing certain behaviors,

in terms of its beliefs about the model of the task, but also provide the user the abil-

ity to override the agent’s belief about the task. We strongly believe that symbolic

models can provide us with an interpretable interface to facilitate such bidirectional

interactions. However, it’s very much an open question on how to effectively take

these post hoc model updates and fold them into the agent’s decision-making process

that may be using inscrutable models.
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Few Shot Learning of Concepts: Unless the concepts are being pre-specified by

a domain expert/designer where they could invest in collecting a large number of

examples, these concepts would need to be learned from a few examples. If the agent

is using learning methods that can compute its own representations of the state for

coming up with decisions. Such simplified representations could then be used as the

input to our vocabulary item classifiers.

Teaching Concepts: One of the possible scenarios we have not quite considered in

this chapter is what happens when the human’s vocabulary has no concept that could

potentially explain the current decision. For example, there may exist no concepts

that can describe the kind of patterns AlphaGo may be looking for to decide novel

moves. In such cases, the agents would need to teach the human new concepts. We

are unaware of any works that have even begun to look at these problems, though one

can imagine effective solutions to this problem would need to make use of strategies

from intelligent tutoring systems (ITS) (Aeronautiques et al., 1998), natural language

generation, and many other subareas of AI.
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Chapter 15

A SAMPLING BASED METHOD TO LEARN SYMBOLIC MODEL

FRAGMENTS FOR CONTRASTIVE EXPLANATIONS

The previous chapter looked at the basic problem of vocabulary mismatch and intro-

duced some of the basic challenges of generating explanations in this setting. This

chapter on the other hand will introduce a specific method for providing contrastive

explanations in terms of user-specified concepts for sequential decision-making set-

tings where the system’s model of the task may be best represented as an inscrutable

model. We do this by building partial symbolic models of a local approximation of

the task that can be leveraged to answer the user queries. We test these methods on

a popular Atari game (Montezuma’s Revenge) and variants of Sokoban (a well-known

planning benchmark) and report the results of user studies to evaluate whether people

find explanations generated in this form useful.

Figure 15.1 presents the flow of the proposed explanation generation process in

the context of Montezuma’s Revenge (Wikipedia contributors, 2019). In this chapter,

we will focus on deterministic settings (Section 15.2), though we can easily extend

the ideas to stochastic settings, and will ground user-specified vocabulary terms in

the AI system’s internal representations via learned classifiers (Section 15.3). The

model components required for explanations are learned by using experiences (i.e.

state-action-state sets) sampled from the agent model (Section 15.3 & 15.4). Ad-

ditionally, we formalize the notion of local symbolic approximation for sequential

decision-making models, and introduce the idea of explanatory confidence (Section

15.5). The exaplanatory confidence captures the fidelity of explanations and help en-

sure the system only provides explanation whose confidence is above a given thresh-
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Figure 15.1: Explanatory Dialogue Starts When the User Presents a Specific Alternate

Plan. The System Explains the Preference over This Alternate Plan in Terms of

Model Information Expressed in Terms of Propositional Concepts Specified by the

User, Operationalized as Classifiers.

old. We will evaluate the effectiveness of the method through both systematic (IRB

approved) user studies and computational experiments (Section 15.6). As we will dis-

cuss in Section 15.1, our approach has some connections to the method presented by

Kim et al. (2018), which while focused on one-shot classification tasks, also advocates

explanations in terms of concepts that have meaning to humans in the loop.

15.1 Related Work

The representative works in the direction of using concept level explanation include

works like those presented by Bau et al. (2017), TCAV (Kim et al., 2018) and its

various offshoots (Luss et al., 2019) that have focused on one-shot decisions. These

works take a line quite similar to us in that they try to create explanations for
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current decisions in terms of a set of user-specified concepts. While these works

don’t explicitly reason about explanatory confidence they do discuss the possibility

of identifying inaccurate explanation, and tries to address them through statistical

tests. Another thread of work, exemplified by works like those presented by Koh et al.

(2020); Lin et al. (2021), tries to force decisions to be made in terms of user-specified

concepts, which can then be used for explanations. There have also been recent works

on automatically identifying human-understandable concepts like the ones presented

by Ghorbani et al. (2019) and Hamidi-Haines et al. (2018). We can also leverage

these methods when our system identifies scenarios with insufficient vocabulary.

Most works in explaining sequential decision-making problems either use a model

specified in a shared vocabulary as a starting point for explanation or focus on

saliency-based explanations (cf. (Chakraborti et al., 2020)), with very few excep-

tions. Hayes and Shah (2017) have looked at the use of high-level concepts for policy

summaries. They use logical formulas to concisely characterize various policy choices,

including states where a specific action may be selected (or not). Unlike our work,

they are not trying to answer why the agent chooses a specific action (or not). Waa

et al. (2018) looked at addressing the suboptimality of foils while supporting inter-

pretable features, but it requires the domain developer to assign positive and negative

outcomes to each action. In addition to not addressing possible vocabulary differences

between a system developer and the end-user, it is also unclear if it is always possible

to attach negative and positive outcomes to individual actions.

Another related work is the approach studied by Madumal et al. (2020c). Here,

they are also trying to characterize dynamics in terms of high-level concepts but

assume that the full structural relationship between the various variables is provided

upfront. The explanations discussed in this chapter can also be seen as a special case

of Model Reconciliation explanation (cf. (Chakraborti et al., 2017)), where the human
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model is considered to be empty. The usefulness of preconditions as explanations has

also been studied by works like the ones by Winikoff (2017); Broekens et al. (2010).

Our effort to associate action cost to concepts could also be contrasted to efforts

by Juozapaitis et al. (2019) and Anderson et al. (2019) which leverage interpretable

reward components. Another group of works popular in RL explanations is the ones

built around saliency maps (Greydanus et al., 2018; Iyer et al., 2018; Puri et al., 2019),

which tend to highlight parts of the state that are important for the current decision.

In particular, we used the method proposed by Greydanus et al. (2018) as a baseline

because many follow-up works have shown their effectiveness (cf. (Zhang et al.,

2020)). Readers can refer to Alharin et al. (2020) for a recent survey of explanations

in RL.

Another related thread of work, is that of learning models ( Carbonell and Gil

(1990); Stern and Juba (2017); Wu et al. (2007) provide some representative works).

To the best of our knowledge none of the works in this direction allow for noisy ob-

servations of state and none focused on identifying specific model components. While

we are unaware of any works that provide confidence over learned model components,

Stern and Juba (2017) provides loose PAC guarantees over the entire learned model.

15.2 Problem Setting

Our setting consists of an agent, be it programmed or RL-based, that has a model

of the dynamics of the task that is inscrutable to the user (in so far that the user

can’t directly use the model representation used by the agent) in the loop and uses

a decision-making process that is sound for this given model. Note that here the

term model is being used in a very general sense. These could refer to tabular mod-

els defined over large atomic state spaces, neural network-based dynamics models

possibly learned over latent representation of the states and even simulators. The
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only restriction we place on the model is that we can sample possible experiences

from it. Regardless of the true representation, we will denote the model by the tuple

M = 〈S,A, T, C〉. Where S and A are the state and action sets and T : S×A→ S∪{⊥}

(⊥ the absorber failure state) and C : S × A → R capture the transition and cost

function. We will use ⊥ to capture failures that could occur when the agent violates

hard constraints like safety constraints or perform any invalid actions. We will con-

sider goal-directed agents that are trying to drive the state of the world to one of the

goal states (G being the set) from an initial state I. The solution takes the form of

a sequence of actions or a plan π.

We will use model similar to the one described in Section 2.1 to approximate

the problem for explanations. Such a model can be represented by the tuple MS =

〈FS , AS , IS , GS , CS〉, where FS is a set of propositional state variables defining the

state space, AS is the set of actions, IS is the initial state, GS is the goal specification.

Each valid problem state is uniquely identified by the subset of state variables that

are true in that state (so for any state s ∈ SMS , where SMS is the set of states for

MS , s ⊆ FS). Each action a ∈ AS is further described in terms of the preconditions

preca (specification of states in which a is executable) and the effects of executing the

action. We will denote the state formed by executing action a in a state s as a(s).

We will focus on models where the preconditions are represented as a conjunction of

propositions. If the action is executed in a state with missing preconditions, then the

execution results in the invalid state ⊥. Unlike standard model described in Section

2.1, where the cost of executing action is independent of states, we will use a state-

dependent cost function of the form CS : 2F × AS → R to capture forms of cost

functions popular in RL benchmarks.
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15.3 Contrastive Explanations

The specific explanatory setting, illustrated in Figure 15.1, is one where the agent

comes up with a plan π (to achieve one of the goals specified in G from I) and the

user responds by raising an alternate plan πf (the foil) that they believe should be

followed instead. Now the system needs to explain why π may be preferred over πf ,

by showing that πf is invalid (i.e., πf doesn’t lead to a goal state or one of the action

in πf results in the invalid state ⊥) or πf is costlier than π (C(I, π) < C(I, πf )).1

To concretize this interaction, consider the modified version of Montezuma’s Re-

venge (Figure 15.1). The agent starts from the highest platform, and the goal is to

get to the key. The specified plan π may require the agent to make its way to the

lowest level, jump over the skull, and then go to the key with a total cost of 20. Now

the user raises two possible foils that are similar to π but use different strategies in

place of jumping over the skull. Foil1 : instead of jumping, the agent just moves left

(i.e., it tries to move through the skull) and, Foil2 : instead of jumping over the skull,

the agent performs the attack action (not part of the original game, but added here

for illustrative purposes) and then moves on to the key. Using the internal model,

the system can recognize that in the first case, moving left would lead to an invalid

state, and in the second case, the foil is costlier, though effectively communicating

this to the user is a different question. If there exists a shared visual communication

channel, the agent could try to demonstrate the outcome of following these alternate

strategies. Unfortunately, this would not only necessitate additional cognitive load

on the user’s end to view the demonstration, but it may also be confusing to the

user in so far that they may not be able to recognize why in a particular state the

move left action was invalid and attack action costly. As established in our user study

1If the foil is as good as the original plan or better, then the system could switch to the foil.
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and pointed out by Atrey et al. (2019), even highlighting of visual features may not

effectively resolve this confusion. This scenario thus necessitates the use of methods

that are able to express possible explanations in terms that the user may understand.

Learning Concept Maps: The input to our system is the set of propositional

concepts the user associates with the task. For Montezuma, this could involve concepts

like agent being on a ladder, holding onto the key, being next to the skull. Each concept

corresponds to a propositional fact that the user associates with the task’s states and

believes their presence or absence in a state could influence the dynamics and the

cost function. We can collect such concepts from subject matter experts as by Cai

et al. (2019), or one could just let the user interact with or observe the agent and

then provide a possible set of concepts. We used the latter approach to collect the

propositions for our evaluation of the Sokoban domains (Section 15.6 and A). Each

concept corresponds to a binary classifier, which detects whether the proposition is

present or absent in a given internal state (thus allowing us to convert the atomic

states into a factored representation). Let C be the set of classifiers corresponding

to the high-level concepts. For state s ∈ S, we will overload the notation C and

specify the concepts that are true as C(s), i.e., C(s) = {ci|ci ∈ C ∧ ci(s) = 1} (where

ci is the classifier corresponding to the ith concept and we overload the notation

to also stand for the label of the ith concept). The training set for such concept

classifiers could come from the user (where they provide a set of positive and negative

examples per concept). Classifiers can be then learned over the model states or the

internal representations used by the agent decision-making (for example activations

of intermediate neural network layers).

Explanation using concepts: To explain the preference of plan π over foil πf , we

will present model information to the user taken from a symbolic representation of

the agent model. But rather than requiring this model to be an exact representation
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of the complete agent model, we will instead focus on accurately capturing a subset

of the model by instead trying to learn a local approximation

Definition 43. A symbolic model MC
S = 〈C, AC

S ,C(I),C(G), CCS 〉. is said to be a

local symbolic approximation of the model MR = 〈S,A, T, C〉 for regions of interest

Ŝ ⊆ S if ∀s ∈ Ŝ and ∀a ∈ A, we have an equivalent action aC ∈ AC
S , such that (a)

aC(C(s)) = C(T (s, a)) (assuming C(⊥) = ⊥) and (b) CCS (C(s), a) = C(s, a) and (c)

C(G) =
⋂
sg∈G∩Ŝ C(sg).

Following Section 15.2, this is a PDDL-style model with preconditions and con-

ditional costs defined over the conjunction of positive propositional literals. A estab-

lishes the sufficiency of this representation to capture arbitrarily complex precondi-

tions (including disjunctions) and cost functions expressed in terms of the proposition

set C. Also to establish the preference of plan does not require informing the users

about the entire model MC
S , but rather only the relevant parts. To establish the in-

validity of πf , we only need to explain the failure of the first failing action ai, i.e., the

one that resulted in the invalid state (for Foil1 this corresponds to move-left action

at the state visualized in Figure 15.1). We explain the failure of action in a state by

pointing out a proposition that is an action precondition which is absent in the given

state. Thus a concept ci ∈ C is considered an explanation for failure of action ai at

state si, if ci ∈ precai \ C(si). For Foil1, the explanation would be – the action

move-left failed in the state as the precondition skull-not-on-left was false in

the state.

This formulation can also capture failure to achieve goal by appending an addi-

tional goal action at the end of the plan, which causes the state to transition to an end

state, and fails for all states except the ones in G. Note that instead of identifying all

the missing preconditions, we focus on identifying a single precondition, as this closely
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follows prescriptions from works in social sciences that have shown that selectivity or

minimality is an essential property of effective explanations (Miller, 2017a).

For explaining suboptimality, we inform the user about the symbolic cost function

CCS . To ensure minimality, rather than provide the entire cost function, we will instead

try to learn and provide an abstraction of the cost function Cabss

Definition 44. For the symbolic model MC
S = 〈C, AC

S ,C(I),C(G), CCS 〉, an abstract

cost function CabsS : 2C × AC
S → R is specified as: CabsS ({c1, .., ck}, a) = min{CCS (s, a)|s ∈

SMC
S
∧ {c1, .., ck} ⊆ s}.

Intuitively, CabsS ({c1, .., ck}, a) = k can be understood as stating that executing

the action a, in the presence of concepts {c1, .., ck} costs at least k. We can use

CabsS in an explanation by identifying a sequence of concept set Cπf = 〈Ĉ1, ..., Ĉk〉,

corresponding to each step of the foil πf = 〈a1, .., ak〉, such that (a) Ĉk is a subset

of concepts in the corresponding state reached by the foil and (b) the total cost

of abstract cost function defined over the concept subsets are larger than the plan

cost
∑

i={1..k} CabsS (Ĉi, ai) > C(I, π). For Foil2, the explanation would include the

information – executing the action attack in the presence of the concept

skull-on-left, will cost at least 500.

15.4 Identifying Explanations through Sample-based Trials

For identifying the model parts, we will rely on the internal model to build sym-

bolic estimates. Since we can separate the two explanation cases using the agent’s

internal model, we will only focus on the problem of identifying the model parts given

the required explanation type.

Identifying failing precondition: The first case we will consider is the one

related to explaining plan failures. In particular, given the failing state sfail and failing
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a Algorithm for Finding Missing Precon-

dition
1: procedure Precondition-search

2: Input : sfail, afail, Sampler,MR,C, `

3: Output : Missing precondition Cprec

4: Procedure:

5: HP ← Missing concepts in sfail

6: sample count = 0

7: while sample count < ` do

8: s ∼ Sampler

9: if T (s, afail) 6= ⊥ then

10: HP ← C(s) ∩HP

11: if |HP| = 0 then return Signal that concept

list is incomplete

12: sample count += 1
return any Ci ∈poss prec set

b Algorithm for Finding Cost Function
1: procedure Cost-Function-search

2: Input : πf , Cπ , Sampler,MR,C, `

3: Output : Cπf

4: Procedure:

5: for conc limit in 1 to |C| do

6: current foil cost = 0, conc list = [], s← I

7: for i in 1 to k (the length of the foil) do

8: s← T (s, ai)

9: Ĉi, min cost =

10: find min conc set(C(s), ai, conc limit, `)

11: current foil cost += min cost

12: conc list.push(Ĉi, min cost)

13: if current foil cost > Cπ then return conc list
return Signal that the concept list is incomplete

Figure 15.2: Algorithms for Identifying (a) Missing Precondition and (b) Cost Func-

tion

foil action afail, we want to find a concept that is absent in sfail but is a precondition for

the action afail. We will try to approximate whether a concept is a precondition or not

by checking whether they appear in all the states sampled from the model, where afail

is executable (S - set of all sampled states). Figure 15.2(a) presents the pseudo-code

for finding such preconditions. We rely on the sampler (denoted as Sampler) to create

the set S, where the number of samples used is upper-bounded by a sampling budget

`. poss prec set captures the set of hypotheses regarding the missing precondition

maintained over the course of the search.

We ensure that models learned are local approximations by considering only sam-

ples within some distance from the states in the plan and foils. For reachability-based

distances, we can use random walks to generate the samples. Specifically, we can start
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a random walk from one of the states observed in the plan/foil and end the sampling

episode whenever the number of steps taken crosses a given threshold. The search

starts with a set of hypotheses for preconditions HP and rejects individual hypotheses

whenever the search sees a state where the action afail is executable and the concept

is absent. The worst-case time complexity of this search is linear on the sampling

budget.

If the hypotheses set turns empty, it points to the fact that the current vocabu-

lary set is insufficient to explain the given plan failure. Focusing on a single model-

component not only simplifies the learning problem but as we will see in Section 15.5

allows us to quantify uncertainty related to the learned model components and also

allow for noisy observation. These capabilities are missing from previous works.

Identifying cost function: We will employ a similar sampling-based method to

identify the cost function abstraction. Unlike the precondition failure case, there is no

single action we can choose, but rather we need to choose a level of abstraction for each

action in the foil (though it may be possible in many cases to explain the suboptimality

of foil by only referring to a subset of actions in the foil). For the concept subset

sequence (Cπf = 〈Ĉ1, ..., Ĉk〉) that constitutes the explanation, we will also try to

minimize the total number of concepts used in the explanation (
∑

i=1..k ‖Ĉi‖). Figure

15.2(b) presents a greedy algorithm to find such cost abstractions. The procedure

find min conc set, takes the current concept representation of state si in the foil and

searches for the subset Ĉi of C(si) with the maximum value for CabsS (Ĉi, ai), where

the value is approximated through sampling (with budget `), and the subset size is

upper bounded by conc limit. As mentioned in Definition 44, the value of CabsS (Ĉi, ai)

is given as the minimal cost observed when executing the action ai in a state where

Ĉi are true. The algorithm incrementally increases the conc limit value till a solution

is found or if it crosses the vocabulary set size. Note that this algorithm is not an
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Figure 15.3: Simplified Probabilistic Graphical Models for Confidence of Learned (A)

Preconditions and (B) Cost).

optimal one, but we found it to be effective enough for the scenarios we tested. We

can again enforce the required locality within the sampler and similar to the previous

case, we can identify the insufficiency of the concept set by the fact that we aren’t able

to identify a valid explanation when conc limit is at vocabulary size. The worst case

time complexity of the search is O(|C| × |πf | × |`|). We are unaware of any existing

works for learning such abstract cost-functions.

15.5 Quantifying Explanatory Confidence

One of the critical challenges faced by any post hoc explanations is the question

of fidelity and how accurately the generated explanations reflect the decision-making

process. In our case, we are particularly concerned about whether the model com-

ponent learned using the algorithms mentioned in Section 15.4 is part of the exact

symbolic representationMC
S (for a given set of states Ŝ and actions Â). Given that we

are identifying model components based on concepts provided by the user, it would
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be easy to generate explanations that feed into the user’s confirmation biases about

the task.

Our confidence value associates a probability of correctness with each learned

model component by leveraging learned relationships between the concepts. Ad-

ditionally, our confidence measure also captures the fact that the learned concept

classifiers will be noisy at best. So we will use the output of the classifiers as noisy

observations of the underlying concepts, with the observation model P (Os
ci
|ci ∈ S)

(where Os
ci

captures the fact that the concept was observed and ci ∈ S represents

whether the concept was present in the state) defined by a probabilistic model of the

classifier prediction.

Figure 15.3, presents a graphical model (with notations defined inline) for mea-

suring the posterior of a model component being true given an observation generated

from the classifier on a sampled state. For a given observation of executions of action

a in state s (Os
a = True or just Os

a), the positive or negative observation of a con-

cept ci (Os
ci

= x, where x ∈ {True, False}) and an observation that action’s cost is

greater than k (OC(s,a)≥k), the updated explanatory confidence for each explanation

type is provided as (1) P (ci ∈ pa|Osci = x ∧ Osa ∧ OC(s)\ci), where ci ∈ pa captures the

fact that the concept is part of the precondition of a and OC(s)\ciis the observed status

of the rest of the concepts, and (2) P (Cabss ({ci}, a) ≥ k|Osci = x ∧ OC(s,a)>=k ∧ OC(s)\ci),

where Cabss ({ci}, a) ≥ k asserts that the abstract cost function defined over concept ci

is greater than k

The final probability for the explanation would be the posterior calculated over

all the state samples. Additionally, we can also extend these probability calculations

to multi-concept cost functions. We can now incorporate these confidence measures

directly into the search algorithms described in Section 15.4 to find the explanation

that maximizes these probabilities. In the case of precondition identification, given a
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noisy classifier, we can no longer use the classifier output to directly remove a concept

from the hypothesis set HP. At the start of the search, we associate a prior to each

hypothesis and use the observed concept value at each executable state to update

the posterior. We only remove a precondition from consideration if the probability

associated with it dips below a threshold κ. For cost function identification, if we have

multiple cost functions with the same upper bound, we select the one with the highest

probability. We also allow for noisy observations in the case of cost identification. The

updated pseudo codes are provided in A.

We can simplify the probability calculations by making the following assumptions:

(1) the distribution of all non-precondition concepts in states where the action is exe-

cutable is the same as their overall distribution (which can be empirically estimated),

(2) The cost distribution of action over states corresponding to a concept that does

not affect the cost function is identical to the overall distribution of cost for the action

(which can again be empirically estimated). The first assumption implies that the

likelihood of seeing a non-precondition concept in a sampled state where the action

is executable is equal to the likelihood of it appearing in any sampled state. In the

most general case, this equals P (ci ∈ s|OC(s)\ci), i.e., the likelihood of seeing this

concept given the other concepts in the state. The second assumption implies that

for a concept that has no bearing on the cost function for an action, the likelihood

that executing the action in a state where the concept is present will result in a cost

greater than k will be the same as that of the action execution resulting in a cost

greater than k for a randomly sampled state (pC(.,a)≥k). This assumption can be fur-

ther relaxed by considering the distribution of the action cost given the rest of the

observed set of concepts (though this would require more samples to learn). The full

derivation of the probability calculations with the assumptions is provided in A and an

empirical evaluation of the assumptions in A. All results reported in the next section
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Figure 15.4: The Plan and Foils Used in the Evaluation, Plans Are Highlighted in

Blue and Foils in Red: (i) Shows the Two Montezuma’s Revenge Screens Used (ii)

the Two Variations of the Sokoban Game Used. For Montezuma the Concepts Cor-

responding to Missing Precondition Are Not on rope,Not on left ledge,Not skull on left

and Is clear down of crab for Failure Points a, B, C and D Respectively (Note All

Concepts Were Originally Defined as Positives and We Formed the Not Concepts

by Negating the Output of the Classifier). Concepts Switch on and On pink cell for

Sokoban Cost Variants That Results in Push Action Costing 10 (Instead of 1)

were calculated using the probabilistic version of the search while allowing for noisy

concept maps.

15.6 Evaluation

We tested the approach on the open-AI gym’s deterministic implementation of

Montezuma’s Revenge (Brockman et al., 2016) for precondition identification and

two modified versions of the gym implementation of Sokoban (Schrader, 2018) for

both precondition and cost function identification. To simplify calculations for the

experiments, we made an additional assumption that the concepts are independent.

All hyperparameters used by learning algorithms are provided in A.

Montezuma’s Revenge: We used RAM-based state representation here. To

introduce richer preconditions to the settings, we marked any non-noop action that

fails to change the current agent state and action that leads to midair states where
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the agent is guaranteed to fall to death (regardless of actions taken) as failures. We

selected four invalid foils (generated by the authors by playing the game), three from

screen-1 and one from screen-4 of the game (Shown in Figure 15.4 (i)). The plan for

screen-1 involved the player reaching a key and for screen-2 the player has to reach

the bottom of the screen. We specified ten concepts, which we believed would be

relevant to the game, for each screen and collected positive and negative examples

using automated scripts. We used AdaBoost Classifiers (Freund et al., 1999) for the

concepts and had an average accuracy of 99.72%.

Sokoban Variants: The original sokoban game involves the player pushing a

box from one position to a target position. We considered two variations of this

basic game. One that requires a switch (green cell) the player could turn on before

pushing the box (referred to as Sokoban-switch), and a second version (Sokoban-cells)

included particular cells (highlighted in pink) from which it is costlier to push the box.

For Sokoban-switch, we had two variations, one in which turning on the switch was

a precondition for push actions and another one in which it merely reduced the cost

of pushing the box. The plan and foil (Shown in Figure 15.4 (ii)) were generated by

the authors by playing the game. We used a survey of graduate students unfamiliar

with our research to collect the set of concepts for these variants. The survey allowed

participants to interact with the game through a web interface (the cost-based version

for Sokoban-switch and Sokoban-cell), and at the end, they were asked to describe

game concepts that they thought were relevant for particular actions. We received 25

unique concepts from six participants for Sokoban-switch and 38 unique concepts from

seven participants for Sokoban-cell. We converted the user descriptions of concepts to

scripts for sampling positive and negative instances. We focused on 18 concepts and 32

concepts for Sokoban-switch and Sokoban-cell, respectively, based on the frequency

with which they appear in game states, and used Convolutional Neural Networks
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Figure 15.5: The Average Probability Assigned to the Correct Model Component

by the Search Algorithms, Calculated over Ten Random Search Episodes with Std-

deviation.

(CNNs) for the classifier (which mapped state images to concepts). The classifiers

had an average accuracy of 99.46% (Sokoban-switch) and 99.34% (Sokoban-cell).

Computational Experiments: We ran the search to identify preconditions for

Montezuma’s foils and Sokoban-switch and cost function for both Sokoban variants.

From the original list of concepts, we doubled the final concept list used by includ-

ing negations of each concept (20 each for Montezuma and 36 and 64 for Sokoban

variants). The probabilistic models for each classifier were calculated from the corre-

sponding test sets. For precondition identification, the search was run with a cutoff

probability of 0.01 for each concept. In each case, our search-based methods were able

to identify the correct model component for explanations. Figure 15.5(A), presents

the probability our system assigns to the correct missing precondition plotted against

the sampling budget. It presents the average calculated across ten random episodes
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Prefers

sym-

bols

Average

Likert-

score

P-value

Precondition 19/20 3.47 1.0× 10−8

Cost 16/20 3.21 0.03

Table 15.1: Results from the user study for hypothesis H1

(which were seeded by default using urandom (Linux, 2013)). We see that in general,

the probability increases with the sampling budget with a few small dips due to mis-

classifications. We had the smallest explanation likelihood for foil1 in screen 1 in Mon-

tezuma (with 0.511 ± 0.001), since it used a common concept, and its presence in the

executable states was not strong evidence for them being a precondition. Though even

in this case, the system correctly identified this concept as the best possible hypothesis

for precondition as all the other hypotheses were eliminated after around 100 samples.

Similarly, Figure 15.5(B) plots the probability assigned to the abstract cost functions.

User study: With the basic explanation generation methods in place, we were

interested in evaluating if users would find such an explanation helpful. All study de-

signs followed our local IRB protocols. We were interested in measuring the effective-

ness of the symbolic explanations over two different dimensions: (a) whether people

prefer explanations that refer to the symbolic model components over a potentially

more concise and direct explanation and (b) whether such explanations help people

get a better understanding of the task (this mirrors the recommendation established

by works like Hoffman et al. (2018)). All study participants were graduate students

(different from those who specified the concepts), the demographics of participants

can be found in A.

For measuring the preference, we tested the hypothesis
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Method # of

Participant

Average

Time

Taken (sec)

Average

# of Steps

Concept-Based 23 43.78 ± 12.59 35.87 ± 9.69

Saliency Map 25 134.24 ± 61.72 52.64 ± 11.11

Table 15.2: Results from the user study for hypothesis H2

H1: People would prefer explanations that establish the corresponding model com-

ponent over ones that directly presents the foil information (i.e. the failing action and

per-step cost)

This is an interesting hypothesis, as in our case, the explanatory text for the

baseline is a lot more concise (in terms of text-size). As per the selectivity princi-

ple (Miller, 2017a), people prefer explanations that doesn’t contain any extraneous

information and thus we are effectively testing here whether people find the model in-

formation extraneous. The exact screenshots of the conditions are provided in A. We

used a within-subject study design where the participants were shown an explanation

generated by our method along with a simple baseline. Precondition case involved

pointing out the failing action and the state it was executed and for the cost case the

exact cost of executing each action in the foil was presented. The users were asked

to choose the one they believed was more useful (the choice ordering was random-

ized to ensure the results were counterbalanced) and were also asked to report on a

five-point Likert scale the completeness of the chosen explanation (1 being not at all

complete and 5 being complete). For precondition, we collected 5 responses per each

Montezuma foil, and for cost we did 10 per each sokoban variant (40 in total). Table

15.1, presents the summary of results from the user study and supports H1. In fact,

a binomial test shows that the selections are statistically significant with respect to

α = 0.05.
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For testing the effectiveness of explanation in helping people understand the task,

we studied

H2: Concept-based precondition explanations help users understand the task better

than saliency map based ones.

We focused saliency maps and preconditions, as saliency map based explanation

could highlight areas corresponding to failed precondition concepts (especially when

concepts correspond to local regions within the image). Currently we are unaware of

any other existing explanation generation method which can generate explanation for

this scenario without introducing additional knowledge about the task. We measured

the user’s understanding of the task by their ability to solve the task by themselves.

We used a between-subject study design, where each participant was limited to a

single explanation type. Each participant was allowed to play the precondition variant

of the sokoban-switch game. They were asked to finish the game within 3 minutes

and were told that there would be bonuses for people who finish the game in the

shortest time. They were not provided any exact instructions about the dynamics of

the game. During the game, if the participant performs an action whose preconditions

are not met, they are shown their respective explanation. Additionally, the current

episode ends and they will have to restart the game from the beginning. One group

of users were provided the precondition explanations generated through our method,

while the rest were presented with a saliency map. For the latter, we used a state

of the art saliency-map based explanation method (Greydanus et al., 2018). The

participants were told that highlighted regions are parts of the state an AI agent

would focus on if it was acting in that state. In all the saliency map explanations, the

highlighted region included the precondition region of switch (shown in A). In total,

we collected 60 responses but had to discard 12 due to the fact they reported not

seeing the explanations. Table 15.2 presents the average time taken and steps taken
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to complete the task (along with 95% confidence intervals). As seen, the average value

is much smaller for concept explanation. Additionally, a two-tailed t-test shows the

results are statistically significant (p-values of 0.021 and 0.038 against a significance

level α = 0.05 for time and steps respectively).

15.7 Concluding Remarks

We view the approaches introduced in the chapter as the first step towards de-

signing more general post hoc symbolic explanation methods for sequential decision-

making problems. We facilitate the generation of explanations in user-specified terms

for contrastive user queries. We implemented these methods in multiple domains and

evaluated the effectiveness of the explanation using user studies and computational

experiments. As discussed in (Kambhampati et al., 2022), one of the big advantages

of creating such symbolic representation is that it provides a symbolic middle layer

that can be used by the users to not only understand agent behavior, but also to

shape it. Thus the user could use the model as a starting point to provide additional

instructions or to clarify their preferences. Section A contains more detailed discus-

sion on various future works and related topics, including its applicability to settings

with stochasticity, partial observability, temporally extended actions, the process of

collecting more concepts, identifying confidence threshold and possible ethical impli-

cations of using our post-hoc explanation generation methods.
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Part IV

INTERPRETABLE BEHAVIOR

GENERATION
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Chapter 16

PART-IV OVERVIEW

The previous three parts of the thesis were focused on the question of how the

robot can explain its decisions, in many cases the optimal one with respect to its task

cost, when it doesn’t align with the human’s expectation about the most preferred

decision. However, the robot being an autonomous decision-maker is free to choose

what plan will follow and in cases where the robot is interacting with the human,

the system may need to make considerations that go beyond the cost of the plan.

One particular aspect the system may need to look at while choosing its plans is the

overhead of explaining a given decision. Not all robot plans, even if one were to limit

themselves to optimal plans, are equivalent in the effort required to explain them. This

means that when the robot is choosing its plans, it could help simplify the interaction

by choosing to follow plans that are easier to explain. However, in many cases the

choice to follow an easier to explain plan may come at a cost to the robot, as it may

be harder for the robot to follow such an easier to explain plan as compared to an

optimal plan. This part of the thesis will be focused on introducing a class of planning

algorithms that are able to choose plans, while being able to make the tradeoff between

the inherent cost of the plan and the overhead associated with explaining the plan.

We will end this part of the thesis by revisiting the general notion of generating

interpretable behavior. We will establish a unified Bayesian model to understand the

entire landscape of interpretable behavior generation works. This framework could

act as a basis for any future methods that can generate similar planners that can
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balance communication with consideration across any interpretability measures.

16.1 Structure for Part III and Technical Contributions

This part will be divided into three chapters

1. Chapter 17: This chapter will introduce the basic problem of planning in the

presence of diverging expectations from an observer. This chapter will formal-

ize the notion of balanced plans and discuss various forms of balanced plans

with differing characteristics. We will establish the complexity of planning in

this context. We will in particular put forth and evaluate an approximate algo-

rithm to generate balanced optimal plans. This chapter will also present some

preliminary user studies that were performed to evaluate balanced plans.

2. Chapter 18: In this chapter, we introduce a novel planning formulation that will

present a single unified planning formulation for balanced planning. Under this

formulation, explanations are treated simply as another set of actions, but ones

with epistemic effects. This means the tradeoff between the cost of explanations

and the cost of a plan can be performed directly by the planner. We also

empirically show that this compilation is more computationally efficient than

the formulation introduced in Chapter 17.

3. Chapter 19: In this chapter, we will take a step back to take a look at the

entire landscape of interpretable behavior generation. So in addition to expli-

cability we will look at the measures like predictability and legibility. In this

chapter, we will introduce a single Bayesian reasoning framework and by ex-

tension a planning formalism that allows the agent to consider all these diverse

interpretability measures simultaneously.
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16.2 Important Takeaways

One of the important takeaways from the series of works is the placement of bal-

anced planning and by extension model-reconciliation explanations in the realm of

epistemic planning. As discussed earlier, since the introduction of this relation be-

tween the two, other works have tried to connect explanations in general to epistemic

reasoning (cf. (Shvo et al., 2020)). While one would be hard pressed to find an exact

analogy to balanced planning within XAI literature, there are works that argue for

choosing models with potentially lower accuracy while improving the overall efficiency

of the human-AI team (cf. (Bansal et al., 2021)). One could argue that when one

uses inherently interpretable models at the cost of overall system performance, one is

engaged in performing a similar trade-off.

Another point that is worth keeping in mind is that the methods discussed in

this part, particularly in Chapters 17 and 18, assume that the human is an optimal

reasoner and there exists no vocabulary mismatch between the human and the robot.

So there is both a scope and need to develop versions of these methods that can

handle cases where these assumptions are not necessarily met. Also while Chapter

19 establishes a starting point for developing similar balancing algorithms for other

interpretability measures, the problem of developing effective planning systems for

those settings is an open one.
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Chapter 17

BALANCING EXPLANATIONS AND EXPLICABILITY

In the previous chapters, we looked at cases where when the robot’s optimal deci-

sion doesn’t match the human’s expectations then the robot can try to update the

human expectations through explanations. However, explanation generation only

constitutes one strategy the robot could pursue. The other being, the possibility for

the robot to follow the plan that aligns with the human’s expectations. This has

been traditionally referred to as explicable planning. Usually, these two processes

of plan explanations and explicability have been treated as two independent ways of

addressing this mismatch in expectations. Following the convention set by Chapter

1, we have focused on cases where the robot selects a plan π∗R, such that there exist

π′ ≺MR
h
π∗R. Under explicable planning we will try to select πH or plans close to πH ,

such that ∀π, πH �MR
h
π.

Additionally, there are situations where a combination of both provide a much

better course of action – if the expected human plan is too costly in the planner’s

model (e.g. the human might not be aware of some safety constraints) or the cost

of communication overhead for explanations is too high (e.g. limited communication

bandwidth). Consider, for example, a human working with a robot that has just

received a software update allowing it to perform new complex maneuvers. Instead

of directly trying to conceive all sorts of new interactions right away that might end

up spooking the user, the robot could instead reveal only certain parts of the new

model while still using its older model (even though suboptimal) for the rest of the

interactions so as to slowly reconcile the drifted model of the user. In this chapter, we

will thus define a planning framework that will bring these two techniques together.
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Following Chapter 4, we will assume that the human is a perfect reasoner and capable

of identifying the optimal plan for a given plan. Additionally, we will assume that

there doesn’t exist any vocabulary mismatch between the human and the robot and

we will focus on deterministic planning problems.

17.1 Illustrative Example

Figure 17.1: A Demonstration of the Explicability-explanation Trade-off. Video Link:

https://youtu.be/Yzp4FU6Vn0M.

We illustrate our approach on a robot performing an Urban Search And Recon-

naissance (USAR) task – here a remote robot is put into disaster response operation

controlled partly or fully by an external human commander. This is a typical USAR

setup (Bartlett, 2015) where the robot’s job is to infiltrate areas that may be oth-

erwise harmful to humans, and report on its surroundings as and when required or

instructed by the external. The external usually has a map of the environment, but

this map is no longer accurate in a disaster setting – e.g. new paths may have opened

up or older paths may no longer be available due to rubble from collapsed structures

like walls and doors. The robot however may not need to inform the external of all
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these changes so as not to cause information overload of the commander who may be

otherwise engaged in orchestrating the entire operation. This requires the robot to

reason about the model differences due to changes in the map, i.e. the initial state of

the planning problem.

Figure 17.1 shows a relevant section of the map of the environment where this

whole scenario plays out. A video demonstration can be viewed at https://youtu.

be/Yzp4FU6Vn0M. The dark marks indicate rubble that has blocked a passage. A lot

of rubble cannot be removed. The robot (Fetch), currently located at the position

marked with a blue O, is tasked with taking a picture at location marked with an

orange O. The commander expects the robot to take the path shown in red, which is

no longer possible. The robot has two choices – it can either follow the green path and

explain the revealed passageway due to the collapse, or compromise on its optimal

path, clear the rubble and proceed along the blue path. The first part of the video

demonstrates the plan that requires the least amount of explanation, i.e. the most

explicable plan. The robot only needs to explain a single initial state change to make

its plan optimal in the updated map of the commander:

remove-has-initial-state-clear_path p1 p8

This is an instance where the plan closest to the human expectation, i.e. the

most explicable plan, still requires an explanation, which previous approaches in the

literature cannot provide. Moreover, in order to follow this plan, the robot must

perform the costly clear passage p2 p3 action to traverse the corridor between p2

and p3, which it could have avoided in its optimal (green) path. Indeed, the robot’s

optimal plan requires the following explanation:

add-has-initial-state-clear_path p6 p7

add-has-initial-state-clear_path p7 p5
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remove-has-initial-state-clear_path p1 p8

By providing this explanation, the robot is able to convey to the human the

optimality of the current plan as well as the infeasibility of the human’s expected

plan (shown in red).

17.2 Expectation-Aware Planning

We will follow the model definition established in Section 2.1, where a model is

given by a tuple M = 〈F,A, I,G,C〉 - where F is a set of fluents that define a state

s ⊆ F , A is a set of actions - and initial and goal states are I,G ⊆ F . Action a ∈ A is a

tuple 〈pre (a), add (a), del (a)〉 where pre (a), add (a), del (a) ⊆ F are the preconditions

and add/delete effects, i.e. δM(s, a) |= ⊥ if s 6|= pre (a); else δM(s, a) |= s ∪ add (a) \

del (a) where δM(·) is the transition function. Finally, C is the cost function

The “model” M of a planning problem includes the action model as well as the

initial and goal states of an agent. The solution to M is a sequence of actions or a

(satisficing) plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G. The cost of a plan π

is C(π) =
∑

a∈π C(a) if δM(I, π) |= G; ∞ otherwise. The optimal plan has cost C∗M.

We will use Π∗M to represent the set of all optimal plans for M.

17.2.1 Expectations and Mental Models in Planning

Interfacing with humans adds a new component to classical planning – the mental

model of the human. This manifests itself in the form of expectations that the human

has of the agent. Such a mental model can be represented as a version of the problem

at hand which the agent believes the human is operating with.1 (Chakraborti et al.,

1The actual decision making problem may be over a graph, a planning problem, a logic program,

etc. Many of the concepts discussed in the chapter, though confined to automated planning, do in

fact carry over beyond the actual representation.
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2017) This brings us the to an extension to the classical planning paradigm that

accepts as inputs the agent model as well as the mental model of the human, in order

to account for the expectations of the human in the planning process.

Definition 45. An Expectation-Aware Planning Problem (EA) is the tuple

Ψ = 〈MR,MR
h 〉 whereMR = 〈FMR

, AM
R
, IM

R
, GM

R
, CM

R〉 is the agent’s model and

MR
h = 〈FMR

h , AM
R
h , IM

R
h , GM

R
h , CM

R
h 〉 is the human’s understanding of the same.2

While the human is under the assumption thatMR
h is an accurate representation of

the task at hand, the model could be different fromMR in terms of action definitions,

the initial state, and the goal. This difference means that plans generated for the

model MR may have different properties in the mental model MR
h . For example, a

plan π∗ that is optimal in MR may be considered suboptimal or even un-executable

by the human. Existing literature has explored two kinds of solutions to EA problems,

as discussed below.

17.2.2 Explicable Plans

An explicable solution to an EA is a plan π (1) executable in the robot’s model

and (2) closest to the expected (optimal) plan in the human’s model –

(1) δMR(IM
R
, π) |= GM

R
; and

(2) CM
R
h (π) ≈ C∗MR

h
.

2This does not assume that humans use an explicitly represented symbolic domain to plan.

The robot only uses this to represent the information content of that model. It cannot, of course,

have direct access to it. There is extensive work on learning such models (cf. (Zhang et al., 2017;

Kulkarni et al., 2019a)) and reasoning with uncertainty over them (Sreedharan et al., 2018a). It is

true that this estimate might be different from the ground truth. However, an agent can only plan

and explain with what it knows.
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“Closeness” or distance to the expected plan is modeled here in terms of cost

optimality, but in general this can be any metric such as plan similarity. In exist-

ing literature (Zhang et al., 2017; Kulkarni et al., 2019a) this has been achieved by

modifying the search process so that the heuristic that guides the search is driven by

the robot’s knowledge of the human mental model. Such a heuristic can be either

derived directly from the mental model (Kulkarni et al., 2019a) or learned (Zhang

et al., 2017) through interactions in the form of affinity functions between plans and

their purported goals.

17.2.3 Plan Explanations

The other approach would be to (1) compute optimal plans in the planner’s model

as usual, but also provide an explanation (2) in the form of a model update to the

human so that (3) the same plan is now also optimal in the updated mental model.

Thus, a solution involves a plan π and an explanation E –

(1) CM
R

(π) = C∗MR ;

(2) M̂R
h ←−MR

h + E ; and

(3) CM̂
R
h (π) = C∗

M̂R
h

.

A model update, as indicated by the + operator, may include a correction to the

belief (goals or state information) as well as information pertaining to the action model

itself, as illustrated by Chakraborti et al. (2017). As a result of this explanation, the

human and the agent both agree that the given plan is the best possible the latter

could have come up with. Note that whether there is no solution in the human

model, or just a different one, does not make any difference. The solution is still an

explanation so that the given plan is the best possible in the updated human model.
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On the other hand, if there is no plan in the robot model, the explanation ensures

that there is no plan in the updated human model either.

In Chapter 4, we explored many such solutions – including ones that minimize

length, called minimally complete explanations or MCEs:

min |E| such that π ∈ Π∗MR
h+E

However, this was done post facto, i.e. the plan was already generated and it

was just a matter of finding the best explanation for it. This not only ignores the

possibility of finding better plans that are also optimal but with smaller explanations,

but also misses avenues of compromise whereby the planner sacrifices its optimality

to reduce the overhead of the explanation process. Our approach is capable of both

explaining its plans as well as choosing plans that align with the user expectations.

17.3 Balancing Explanation and Explicable Behavior Generation

In this chapter, we propose a “balanced solution” to an EA, with components of

both explicability and explanation. This means that a solution may consist of model

information to be provided to the observer along with the plan that will be followed

by the agent. By allowing the planner to reason about explanations relevant to a

given plan, we will effectively create agents that are able to combine the strengths

of explicable planning and explanation generation. This method would even allow

the agent to fall back to pure forms of these strategies when the situation demands

for it. We will call such plans Balanced Plans and represent them as a tuple of the

form (π, E), where π is the plan the agent will be following and E is the explanatory

information the robot will be providing the human.

We will start by establishing the complexity of generating valid balanced plans,

i.e., generate (π, E) for a given EA problem such that the plan π is valid in both the
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robot model and the updated human model.

Theorem 11. For a given EA problem Ψ = 〈MR,MR
h 〉, where bothMR andMR

h are

represented as classical planning problems, the problem of identifying a valid blanced

plan for Ψ is PSPACE-complete.

Proof Sketch. The PSPACE-hardness for creating a balanced plan for EA is easy to

establish since the problem of planning with just agent model can be mapped to a

specific EA planning scenario where both agent and user have the same model (thus

possible explanations are empty). We can establish membership in PSPACE class by

showing that there exist a sound and complete compilation from creating balanced

plans for EA to a planning problem with conditional effects and disjunctive/negative

preconditions that is linear in size of the original planning problems. We can then

follow the same proof specified by (Bylander, 1994) to show that the problem of plan

existence is still in PSPACE for this class of planning problems. The exact details of

the compilation along with the soundness and completeness proofs will be discussed

in Theorem 12.

But in most cases, we need to go beyond just generating valid plans and talk

about generating cost-minimizing and even optimal solutions. The general problem

of creating balanced plans involves optimizing for the following cost terms.

1. Plan Cost C(π): The first objective is the cost of the plan that the robot is

going to follow.

2. Communication Cost C(E): The next objective is the cost of communicating

the explanation. Ideally this cost should reflect both the cost accrued at the

agent’s end (corresponding to the cost of actions that need to be performed

to communicate the information) and a cost relating to the difficulty faced by
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the human to understand the explanation. For the majority of this chapter,

we will use explanation length as a proxy for both aspects of explanation costs

(C(E) = | E |): i.e. the larger an explanation, the harder it may be to understand

for the human.

3. Penalty of Inexplicability (CIE(π,MR
h + E)): This corresponds to the cost

the human attaches to the inexplicability of the generated plan in their updated

mental model. We will generally assume this cost to be directly proportional

to the inexplicability score related to the plan. As in the case of explicable

planning, we could measure inexplicability in terms of several different metrics,

but this chapter will mostly focus on measuring inexplicability in terms of the

difference between the cost of the current plan in the human’s updated model

and the cost of the expected plan. We will assume the penalty itself to be

directly proportional to the absolute value of this difference.

While in the most general case generating a balanced plan would be a multi-

objective optimization, for simplicity, we will assume that we have weight parameters

that allow us to combine the individual costs into a single cost. Thus the cost of a

balanced plan (which includes both an explanation and a plan), would be given as

C((E , π)) = C(E) + α ∗ C(π) + β ∗ CIE(π,MR
h + E) (17.1)

Property 1 A balanced solution is non-unique. This is similar to standalone expli-

cable plans and plan explanations – i.e. there can be many solutions to choose from,

even for a given set of weight parameters α and β. Interestingly, solutions that are

equally good according to the cost model can turn out to be different in usefulness

to the human, as investigated recently by (Zahedi et al., 2019) in the context of plan

explanations. This can have similar implications to balanced solutions as well.
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Apart from Section 18.3.2, we will rarely look at optimizing this full cost term.

Instead, we will look at some special cases of this general optimization problem.

Below we will look at three classes of balanced planning problems, each looking at

optimizing a successively more constrained version of the cost function defined above.

1. Optimal Balanced Planning: The first group obviously correspond to gen-

erating plans that optimizes for the cost function provided in Equation 17.1.

Obviously the nature of the final solution still rely heavily on the values of the

parameters α and β. We will take a look at the impact of these values on the

nature of the solution generated in Section 18.3.2.

2. Balanced Explicable Plans: The first special case we could consider are the

ones where we restrict ourselves to cases where the plan is perfectly explicable,

i.e., optimal, in the resultant model. Therefore in our objective we can ignore

the inexplicability penalty term and the optimization objective becomes.

min
(π,E)

C(E) + α ∗ C(π)

subject to IE(π,MR
h + E) = 0

Most of this chapter will focus on generating this type of balanced plans. Note

that while the plan may be optimal in the human’s updated model, the plan need

not be optimal for the robot. Which brings us to the next group of behavior.

3. Balanced Optimal Plans: In this case, we constrain ourselves to identifying

not only plans and explanations that will ensure perfect explicability, but we

also try to ensure that the plans are in fact optimal in the robot model (note

that this carries an inherent bias that robot’s task level actions are always more
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expensive than communication, which need not be true). Thus the objective in

this case becomes just

min
(π,E)

C(E)

subject to IE(π,MR
h + E) = 0

and C(π,MR) = C∗MR

Interestingly, this means identifying the optimal in the robot’s model with the

MCE with the minimal cost.

In the following sections, we will see how one could generate such balanced plans.

17.3.1 The MEGA Algorithm: Model Space Search

We employ a model space A∗ search to compute the optimal Balanced Explicable

Plan for a given α.3 We call this novel planning technique MEGA (Multi-model Expla-

nation Generation Algorithm). Similar to Chakraborti et al. (2017) we define a state

representation over planning problems with a mapping function Γ : M 7→ F which

represents a planning problem by transforming every condition in it into a predicate.

The set Λ of actions contains unit model change actions which make a single change

to a domain at a time. Note that our use of ‘+’ operator does not imply that all

model reconciliation explanations are additive as E could include information aimed

at correcting user’s misconceptions about additional effects or even additional actions

that the robot is capable of. We will follow the conventions set by Chakraborti et al.

(2017) and focus on three main types of model updates:

3As in Chapter 4 we assume that the mental model is known and has the same computation

power: Chapter 4 also suggests possible ways to address this, the same discussions apply here as

well.
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Figure 17.2: Model Space Search to Determine the Best Model to Plan in W.R.T.

The Explanation Versus Explicability Trade-off. The Search Stops at the Blue Node

Which Houses a Model Where the Generated Plan Is Optimal. The Green Node with

the Best Value of the Objective Function Is Then Selected as the Solution.

1. Turn a fluent p true or false in initial state. Represented by the operator

{add/remove}-p-from-I.

2. Add or remove a fluent p from the precondition (or add or delete effect) list of an

action a. Represented by the operator {add/remove}-p-from-{prec/adds/dels}-

of-a.

3. Add or remove a fluent p from the goal list. Represented by the operator

{add/remove}-p-from-G.

The algorithm starts by initializing the min node tuple (N ) with the human mental

model MR
h and an empty explanation. For each new possible model M̂ generated

during model space search, we test if the objective value of the new node is smaller

than the current min node. Note that we will specifically focus on cases where the

cost of an explanation E equals to | E |. We stop the search once we identify a model

that is capable of producing a plan that is also optimal in the robot’s own model.

This is different from the original MCE-search (Chakraborti et al., 2017) where we

were trying to find the first node where a given plan is optimal. Finally, we select the
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node with the best objective value as the solution. Algorithm 10 provides details of

the model space search process, while Figure 17.2 provides a visual depiction of the

same. The search stops upon reaching the blue node (which houses a possible model

update where the generated plan is optimal). The green node with the best value of

the objective function is then selected as the solution.

17.3.2 Properties of Balanced Explicable Plans and MEGAAlgorithm

In the following discussion, we will compare and contrast some properties of this

balanced approach to planning, especially as it relates to the explanation or explica-

bility only point of views.

Property 2 MEGA yields the smallest possible explanation for any plan generated

as part of the solution (E , π).

This means that with a high enough α the algorithm is guaranteed to compute the

best possible plan for the planner as well as the smallest explanation associated with

it. This is by construction of the search process itself, i.e. the search only terminates

after the all the nodes that allow CM̂
R
h (π) = C∗

M̂R
h

have been exhausted. This is

beyond what is offered by the model reconciliation search (cf. Chapter 4), which

only computes the smallest explanation given a plan that is optimal in the planner’s

model.

Property 3 α = | MR ∆ MR
h | (i.e. the total number of differences in the mod-

els) yields the most optimal plan in the planner’s model along with the minimal

explanation possible.

This is easy to see, since with ∀E , |E| ≤ | MR ∆MR
h |, the latter being the total

model difference, the penalty for departure from explicable plans is high enough that

the planner must choose from possible explanations only (note that the explicability
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Algorithm 10 MEGA

1: procedure MEGA-Search

2: Input : EP Ψ = 〈MR,MR
h 〉, α

3: Output : Plan π and Explanation E

4: fringe ← Priority Queue()

5: c list ← {} . Closed list

6: Nmin ← 〈MR
h , {}〉 . Track node with min. value of obj.

7: fringe.push(〈MR
h , {}〉, priority = 0)

8: while True do

9: 〈M̂, E〉, c← fringe.pop(M̂)

10: if OBJ VAL(〈M̂, E〉) ≤ OBJ VAL(Nmin) then

11: Nmin ← 〈M̂, E〉 . Update min node

12: for ∀π∗
M̂

do . This is relaxed in optimistic version

13: if CM
R

(π∗
M̂

) = C∗MR then . Search is complete when π∗
M̂

is optimal in MR

14: 〈Mmin, Emin〉 ← Nmin

15: return 〈πMmin
, Emin〉

16: else

17: c list ← c list ∪ M̂

18: for f ∈ Γ(M̂) \ Γ(MR) do . Misconceptions in the mental model

19: λ← 〈1, {M̂}, {}, {f}〉 . Remove from M̂

20: if δMR
h ,MR(Γ(M̂), λ) 6∈ c list then

21: fringe.push(〈δMR
h ,MR(Γ(M̂), λ)E ∪ λ〉, c+ 1)

22: for f ∈ Γ(MR) \ Γ(M̂) do . Missing conditions in the mental model

23: λ← 〈1, {M̂}, {f}, {}〉 . Add to M̂

24: if δMR
h ,MR(Γ(M̂), λ) 6∈ c list then

25: fringe.push(〈δMR
h ,MR(Γ(M̂), λ)E ∪ λ〉, c+ 1)

26: procedure OBJ VAL(〈M̂, E〉)

27: return |E| + α× | minπ∗
M̂
CM

R

(π∗
M̂

) |

28: . Consider optimal plan in M̂ that is cheapest in MR

343



penalty is always positive until the search hits the nodes with CM̂
R
h (π) = C∗

M̂R
h

,

at which point onwards the penalty is exactly zero). In general this works for

any α ≥ |MCE| but since an MCE will only be known retrospectively after the

search is complete, the above condition suffices since the entire model difference

is known up front and is the largest possible explanation. In other words, setting

α = | MR ∆ MR
h | will force MEGA to generate Balanced optimal plans.

Property 4 α = 0 yields the plan that requires least amount of explanations.

Under this condition, the planner minimizes the cost of explanations only – i.e.

it will produce the plan that requires the shortest explanation. This brings us close

to the original “explicability only” view of planning by Zhang et al. (2017); Kulkarni

et al. (2019a), where the cost of robot plan is secondary to generating plans that are

easier for the human to understand. Though unlike the earlier works in this case we

limit ourselves to plans that are perfectly explicable, that is plans that are optimal

in the (possibly updated) human model. So if the

Property 5 MEGA-search is required only once per problem, and is independent of

the hyperparameter α.

The algorithm terminates only after all the nodes containing a minimally complete

explanation have been explored. This means that for different values of α, the agent

only needs to post-process the nodes with the new objective function in mind. Thus,

a large part of the reasoning process for a particular problem can be pre-computed.

Approximate MEGA

MEGA evaluates executability (in the robot model) of all optimal plans within each

intermediate model during search. This is quite expensive. Instead, we implement

MEGA-approx that does this check only for the first optimal plan that gets computed.
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This means that, in Alogirthm 10, we drop the loop (line 16) and have a single

opitmality cost (line 38). This has the following consequence.

Property 6 MEGA-approx is not complete.

MEGA-approx is an optimistic version of MEGA and is not guaranteed to find all

balanced solutions. This is because in each search node we are checking for whether

an optimal plans – the first one that gets computed – is executable in the robot

model, and moving on if not. In models where multiple optimal plans are possible,

and some are executable in the robot model while others are not, this will result

in MEGA-approx discarding certain models as viable solutions where a balanced plan

was actually possible. The resulting incompleteness of the search means we lose

Properties 1 and 3, but it also allows us to compare directly to the methods discussed

by Chakraborti et al. (2017) where the optimal plan is fixed.

17.4 Empirical Results

We will now provide evaluations of MEGA-approx demonstrating the trade-off in

the cost and computation time of plans with respect to varying size of the model

difference and the hyper-parameter α. We will then report on human factor studies

on how this trade-off is received by users. Note that the two flavors of evaluations are

done with different motivations. The former evaluates the explicability-explanation

trade-off from the perspective of the robot which is able to minimize communication

but also the penalty due to explicability. The user study instead evaluates the effect

of this on the human.
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17.4.1 Illustration of the Cost Trade-off in Balanced Plans

The hyperparameter α determines how much an agent is willing to sacrifice op-

timality versus the explanation cost. We will illustrate this trade-off on modified

versions of two popular IPC4 domains.

The Rover (Meets a Martian) Domain Here the IPC Mars Rover has a model

as described in the IPC domain, but has undergone an update whereby it can carry

the rock and soil samples needed for a mission at the same time. This means that it

does not need to empty the store before collecting new rock and soil samples anymore

so that the new action definitions for sample soil and sample rock no longer contain

the precondition (empty ?s).

During its mission it runs across a Martian who is unaware of the robot’s expanded

storage capacity, and has an older, extremely cautious, model of the rover it has

learned while spying on it from its cave. It believes that any time the Rover collects

a rock sample, it also needs to collect a soil sample and need to communicate this

information to the lander. The Martian also believes that before the rover can perform

take image action, it needs to send the soil data and rock data of the waypoint from

where it is taking the image. Clearly, if the rover was to follow this model, in order

not to spook the Martian it will end up spending a lot of time performing unnecessary

actions (like dropping old samples and collecting unnecessary samples) – e.g. if the

rover is to communicate an image of an objective objective2, all it needs to do is

move to a waypoint (waypoint3) from where objective2 is visible and perform the

action:

(take_image waypoint3 objective2 camera0 high_res)

4From the International Planning Competition (IPC) 2011: http://www.plg.inf.uc3m.es/

ipc2011-learning/Domains.html
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If the rover was to produce a plan that better represents the Martian’s expectations,

it would look like:

(sample_soil store waypoint3)

(communicate_soil_data waypoint3 waypoint3 waypoint0)

(drop_off store)

(sample_rock store waypoint3)

(communicate_rock_data waypoint3 waypoint3 waypoint0)

(take_image waypoint3 objective1 camera0 high_res)

If the rover uses an MCE here, it ends up explaining 6 model differences. In

some cases, this may be acceptable, but in others, it may make more sense for the

rover to bear the extra cost rather than laboriously walk through all updates with

an impatient Martian. Figure 17.3 shows how the explicability and explanation costs

vary for problem instances in this domain. The algorithm converges to the smallest

possible MCE, when α is set to 1. For smaller α, MEGA saves explanation cost by

choosing more explicable (and expensive) plans.

(a) The Rover (Meets a Martian) Domain (b) The Barman (in a Bar) Domain

Figure 17.3: The Explicability Versus Explanation Costs W.R.T. α.
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∆ = 2 ∆ = 7 ∆ = 10

|E| Time |E| Time |E| Time

Rover

p1 0 1.22 1 5.83 3 143.84

p2 1 1.79 5 125.64 6 1061.82

p3 0 8.35 2 10.46 3 53.22

Barman

p1 2 18.70 6 163.94 6 5576.06

p2 2 2.43 4 57.83 6 953.47

p3 2 45.32 5 4183.55 6 5061.50

Table 17.1: Runtime (Sec) and Size of Explanations E W.R.T. The Size of Model

Difference ∆.

The Barman (in a Bar) Domain Here, the brand new two-handed Barman robot

is wowing onlookers with its single-handed skills, even as its admirers who may be

unsure of its capabilities expect, much like the standard IPC domain, that it needs

one hand free for actions like fill-shot, refill-shot, shake etc. This means that

to make a single shot of a cocktail with two shots of the same ingredient with three

shots and one shaker, the human expects the robot to:

(fill-shot shot2 ingredient2 left right dispenser2)

(pour-shot-to-used-shaker shot2 ingredient3 shaker1 left)

(refill-shot shot2 ingredient3 left right dispenser3)

(pour-shot-to-used-shaker shot2 ingredient3 shaker1 left)

(leave left shot2)

(grasp left shaker1)

The robot can, however, directly start by picking both the shot and the shaker

and does not need to put either of them down while making the cocktail. Similar to

the Rover domain, we again illustrate (Figure 17.3) how at lower values of α the robot

generates plans that require less explanation. As α increases the algorithm produces
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plans that require larger explanations with the explanations finally converging at the

smallest MCE required for that problem.

Table 17.1 illustrates how the length of explanations computed square off with

the total model difference ∆. Clearly, there are significant gains to be had in terms

of minimality of explanations and the reduction in cost of explicable plans as a result

of it. This is something the robot trades off internally by considering its limits of

communication, cost model, etc. We will discuss the external effect of this (on the

human) later in the human factors study.

17.5 Results from the User Study

In this section, we will use the USAR domain introduced before to analyze how

participants in a user study responded to the explicability versus explanations trade-

off. The experimental setup (reproduced here in part of clarity) derives from those

used to study the broader details of the model reconciliation process by Chakraborti

et al. (2019e). Specifically, we set out to test two key hypothesis –

H1. Subjects would require explanations when the robot comes up with suboptimal

plans in the mental model.

H1a. Response to balanced plans should be indistinguishable from inexplicable

/ robot optimal plans.

H2. Subjects would require less explanations for explicable plans as opposed to

balanced or robot optimal plans.

As we explained before, H1 is the key thesis from Chapter 4 that we build on

here; it formulates the process of explanation as one of model reconciliation to achieve

common grounds with respect to a plan’s optimality. This forms the basis of incorpo-

rating considerations of explanations in the plan generation process as well, as done
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in the chapter, in the event of model differences with the human in the loop. H2

forms the other side of this coin and completes the motivation of computing balanced

plans. Note that balanced plans would still appear suboptimal (and hence inexpli-

cable) to the human even though they afford opportunities to the robot to explain

less or perform a more optimal plan. Thus, we expect (H1a) their behavior to be

identical in case of both robot optimal and balanced plans.

Figure 17.4: Interface for the External Commander in the USAR Domain.

17.5.1 Experimental Setup

The experimental setup exposes the external commander’s interface to partici-

pants who get to analyze plans in a mock USAR scenario. The participants were
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incentivized to make sure that the explanation does indeed help them understand the

optimality of the plans in question by formulating the interaction in the form of a

game. This is to make sure that participants were sufficiently invested in the outcome

as well as mimic the high-stakes nature of USAR settings to accurately evaluate the

explanations. Figure 17.4 shows a screenshot of the interface which displays to each

participant an initial map (which they are told may differ from the robot’s actual

map), the starting point and the goal. A plan is illustrated in the form of a series

of paths through various waypoints highlighted on the map. The participant had to

identify if the plan shown is optimal. If unsure, they could ask for an explanation.

The explanation was provided in the form of a set of changes to the player’s map. The

player was awarded 50 points for correctly identifying the plan as either optimal or

satisficing. Incorrect identification cost them 20 points. Every request for explanation

further cost them 5 points, while skipping a map did not result in any penalty. Even

though there were no incorrect plans in the dataset, the participants were told that

selecting an inexecutable plan as either feasible or optimal would result in a penalty

of 400 points, in order to deter them from guessing when they were unsure.

Each subject was paid $10 as compensation for their participation and received

additional bonuses depending on how well the performed (≤ 240 to ≥ 540 points).

This was done to ensure that participants only ask for an explanation when they are

unsure about the quality of the plan (due to small negative points on explanations)

while they are also incentivized to identify the feasibility and optimality of the given

plan correctly, with a reward for identifying the correct properties and a penalty for

doing this wrongly.

Each participant was shown 12 maps. For 6 of them, they were was shown the

optimal robot plan, and when they asked for an explanation, they were randomly

shown different types of explanations from Chapter 4. For the rest, they were either
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shown a (explicable) plan that is optimal in their model with no explanation or a

balanced plan with a shorter explanation. We had 27 participants, 4 female and 22

male of age 19-31 (1 participant did not reveal their demographic) with a total of 382

responses across all maps.

17.5.2 Salient Findings

Figure 17.5 shows how people responded to different kinds of plans and their asso-

ciated explanations. These results are from the two problem instances that included

both a balanced and a fully explicable plan. Out of 54 user responses to these, 13 were

for explicable plans and 12 for the balanced ones. From the perspective of the human,

the balanced plan and the robot optimal plan do not make any difference since both

of them appear suboptimal. This is evident from the fact that the click-through rate

for explanations in these two conditions are similar (H1a) – the high click-through

rates for perceived suboptimality conform to the expectations of H1a. Furthermore,

the rate of explanations is much less for explicable plans as desired (H2).

Table 17.2 shows the statistics of the explanations / plans. These results are from

124 problem instances that required MCEs as per Chapter 4, and 25 and 40 instances

that contained balanced and explicable plans respectively. As desired, the robot gains

in the reduced length of explanations but loses out in the cost of plans produced as it

progresses along the spectrum of optimal to explicable plans. Thus, while Table 17.2

demonstrates the explanation versus explicability trade-off from the robot’s point of

view, Figure 17.5 shows how this trade-off is perceived from the human’s perspective.

It is interesting to see that in Figure 17.5 almost a third of the time, participants

still asked for explanations even when the plan was explicable, i.e. optimal in their

map. This may be an artifact of the risk-averse behavior incentivized by the gamifica-

tion of the explanation process as well as an indication of the cognitive burden on the
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Figure 17.5: Percentage of times Participants in the Study Asked for Explanations

for Different Types of Plans, Illustrating Reduced Demand for Explanations for Ex-

plicable Plans with No Significant Difference for Robot Optimal and Balanced Plans.

Figure 17.6: Click-through Rates for Explanations.

Optimal Plan Balanced Plan Explicable Plan

|E| CM
R

(π) |E| CM
R

(π) |E| CM
R

(π)

2.5 5.5 1 8.5 - 16

Table 17.2: Statistics of Explicability Vs. Explanation Trade-off.

humans who are never (cost) optimal planners. Furthermore, the participants also

did not ask for explanations around 20-25% of the time when they “should have” (i.e.

suboptimal plan in the human model). There was no clear trend here (e.g. decreas-
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ing rate for explanations asked due to, perhaps, increasing trust during the course

of the experiment) and was most likely due to limitations of inferential capability of

humans. Thus, going forward, the objective function must look to incorporate the

cost or difficulty of analyzing the plans and explanations from the point of view of the

human in addition to that in MEGA(4) and Table 17.2 modeled from the perspective

of the robot.

Finally, in Figure 17.6, we show how the participants responded to inexplica-

ble plans, in terms of their click-through rate on the explanation request button.

Figure 17.6(left) shows the % of times subjects asked for explanations while Fig-

ure 17.6(right) shows the same w.r.t. the number of participants. They indicate the

variance of human response to the explicability-explanations trade-off. Such informa-

tion can be used to model the α parameter to situate the explicability versus expla-

nation trade-off according to preferences of individual users. It is interesting to see

that the distribution of participants (right) seem to be bimodal indicating that sub-

jects are either particularly skewed towards risk-averse behavior or not, rather than

a normal distribution of responses to the explanation-explicability trade-off. This is

somewhat counter-intuitive and against expectations (H1) and further motivates the

need for learning α interactively.

17.6 Concluding Remarks

This chapter introduces the basic framework of expectation-aware planning and

introduces the notion of a balanced solution. We looked at how one could generate

such balanced solutions, however the central focus in this chapter was introducing

and empirically evaluating an approximate solution. However, in the next chapter

we will see a method that is a complete approach for generating balanced solutions.

This chapter also presents the results from a user study to evaluate the balanced

354



solutions. One of the limitations of this method and one that will also be present

in the techniques discussed in the next section is the fact that the explanation and

explicability techniques considered are described only for cases where the human

confusion comes purely from an asymmetry in knowledge. Going forward, we will

need to develop methods that can also take into account asymmetry in inferential

capabilities and can also support cases where there may be a vocabulary mismatch.
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Chapter 18

SYNTHESIZING AND EXECUTING SELF-EXPLAINING PLANS

In the previous chapter, we established a basic expectation-aware planning frame-

work and introduced the notion of balanced planning. In this chapter, we will look

at an alternate solution technique to solving expectation-aware planning problems.

One that leads to what may be best described as self-explaining plans with the plan

now containing actions that are responsible for explaining the rest of the plan. Such

explanations may be delivered by purely communicative actions (thereby allowing for

explanations as studied by Chakraborti et al. (2017)) that are meant to update the

human’s mental model or task level actions that could also have epistemic side effects

(thereby allowing for actions of the type studied by Kwon et al. (2018)). Addition-

ally, the framework allows for selecting plans that aligns with human expectations

whenever possible. The method will leverage previous formulations that have been

proposed to compile epistemic planning problems into classical planning problems.

We will also empirically show how this approach provides a computational advantage

over our earlier approaches that rely on search in the space of models.

18.1 Background

We will again focus on deterministic planning problems defined by the tupleM =

〈F,A, I,G,C〉 (Section 2.1). We will use Π∗M to represent the set of all optimal plans

for M. To simplify the notations, we will use a(s) to capture the effect of executing

an action at a state and π(s) to capture the effect of executing the plan π. Similar to

Chapter 9, we will capture the different action definitions in different models using a

parameterized entailment notation |=·.
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Our setting involves an agent that makes decisions using its own model MR =

〈F,AR, IR, GR, C〉 while a human evaluates the plan using their mental modelMR
h =

〈F,ARh , IRh , GR
h , C〉. For ease of discussion, we concentrate on the specific case where

conditions for actions only consist of conjunction of positive literals and the actions

have the same cost in both models. While the human is under the assumption that

MR
h is an accurate representation of the task at hand, the model could be different

fromMR in terms of action definitions, the initial state, and the goal. This difference

means that plans generated for the model MR may have different properties in the

mental modelMR
h . For example, a plan π∗ that is optimal inMR may be considered

suboptimal or even un-executable by the human.

When model asymmetry becomes a source of confusion for the observer, explaining

the plan must involve bridging this gap. We can leverage explanations as model

reconciliation (cf. Chapter 4) that focus on providing enough information that the

current plan has required properties (such as executability, optimality, etc.) in the

updated model. When the agent is aware of MR
h , it can use this knowledge to

figure out the minimal (where minimality of explanations is defined with respect

to an explanation cost CE) information it needs to provide to achieve the required

properties. For example, the problem of identifying explanations for establishing

optimality of a given plan π thus becomes:

argminE(CE(E))

such that π ∈ Π∗MR
h+E

where E is a set of model information about the agent to be provided to the user

as explanation (this could include truth value of fluents in initial state, presence or

absence of literals in preconditions/effects, etc.) and MR
h + E is the updated user

model after the explanation. Note that our use of ‘+’ operator does not imply that all
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model reconciliation explanations are additive as E could include information aimed

at correcting user’s misconceptions about additional effects or even additional actions

that the robot is capable of. We will follow the conventions set by Chakraborti et al.

(2017) (and Chapter 4) and as in the previous chapter focus on three main types of

model updates

(1) {add/remove}-p-from-I

(2) {add/remove}-p-from-{prec/adds/dels}-of-a

(3) {add/remove}-p-from-G

This focuses on cases where the agent is explaining its plan to the human after

generating it. The flip side would be to try generating plans that are tailored for the

human model. This is referred to as explicable planning and the most basic version

of this problem can be formulated as:

argminπ(C(π))

such that π(IR) |= GR and π(IRh ) |= GR
h

This computes a plan that is executable in the agent model and the human mental

model with the lowest cost. Our approach is capable of both explaining its plans

as well as choosing plans that align with the user expectations. Before delving into

details, we briefly introduce the search and rescue domain from Chakraborti et al.

(2019f) which we will use as an illustrative example for the rest of the chapter.

18.2 Our Running Example: Search & Rescue

A typical Urban Search and Rescue (USAR) scenario consists of an autonomous

robot deployed to a disaster scene with an external commander who is monitoring

its activities. Both agents start with the same model of the world (i.e the map of
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Figure 18.1: Illustration of the Robot Model and the Corresponding Mental Model of

the Human. The Robot Starts at P1 and Needs to Go to P17. The Human Incorrectly

Believes That the Path from P16 to P17 Is Clear and the One from P2 to P3 Is Blocked

Due to Fire. Both Agents Know That There Is Movable Rubble Between P5 and P6

Which Can Be Cleared with a Costly Clear passage Action. Finally, in the Mental

Model, the Door at P8 Is Locked While It Is Unlocked in the Model for the Robot

Which Cannot Open Unlocked Doors.

the building before the disaster) but the models diverge over time since the robot,

being internal to the scene, has access to updated information about the building.

This model divergence could lead to the commander incorrectly evaluating valid plans

from the robot as sub-optimal or even unsafe. One way to satisfy the commander

would be to communicate or explain changes to the model that led the robot to come

up with those plans in the first place.

Figure 18.1 illustrates a scenario where the robot needs to travel from P1 to its

goal at P17. The optimal plan expected by the commander is highlighted in grey

in their map and involves the robot moving through waypoint P7 and follow that

corridor to go to P15 and then finally to P16. The robot knows that it should in fact

be moving to P2 – its optimal plan is highlighted in blue. This disagreement rises
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from the fact that the human incorrectly believes that the path from P16 to P17 is

clear while that from P2 to P3 is blocked.

If the robot were to follow the explanation scheme established by Chakraborti

et al. (2017), it would stick to its own plan and provide the following explanation:

> remove-( c l e a r p16 p17 )-from-I

( i . e . Path from P16 to P17 i s blocked )

> add-( c l e a r p2 p3 )-to- I

( i . e . Path from P2 to P3 i s c l e a r )

If the robot were to stick to a purely explicable plan (Zhang et al., 2017) then it can

choose to use the passage through P5 and P6 after performing a costly clear passage

action (this plan is not optimal in either of the models).

18.2.1 Self-explaining Plans as Solutions to EA

One of the main challenges of compiling an EA problem to a traditional planning

problems is to allow for a way to handle the identification of model updates and

to account for the effect of these model updates on the user’s expectation. A good

way to go about this would be by acknowledging that that if the observer is actually

watching the agent executing a plan, these explanations can delivered through and

hence modeled as communicative or explanatory actions. These actions can, in fact, be

seen as actions with epistemic effects in as much as they are aimed towards modifying

the human mental model (knowledge state). This means that a solution to an EA

planning problem can be seen as self-explaining plans, in the sense that some of the

actions in the plan are aimed at helping people better understand the rest of it.

This puts EA planning squarely in the purview of epistemic planning, but the

additional constraints enforced by the setting allow us to leverage relatively efficient

methods to solve the problem at hand. These constraints include facts such as: all
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epistemic actions are public, modal depth is restricted to one, modal operators only

applied to literals, for any literal the observer believes it to be true or false and the

robot is fully aware of all of the observer beliefs.

Model updates in the form of epistemic effects of communication actions also open

up the possibility of other actions having epistemic side effects. The definition of EA

makes no claims as to how the model update information is delivered. It is quite pos-

sible that actions that the agent is performing to achieve the goal (henceforth referred

to as task-level actions to differentiate it from primary epistemic communication ac-

tions) itself could have epistemic side-effects. This is something people leverage to

simplify communication – e.g. one might avoid providing prior description of some

skill they are about to use when they can simply demonstrate it. So one of our goals

with the compilation is to allow for such epistemic side effects; a factor that has previ-

ously been not considered in any of the earlier works. This consideration also enables

us to also capture task level constraints that may be imposed on the communication

actions.

Compilation to classical planning.

To support such self-explaining plans, we adopt a formulation that is similar to the

one introduced by Muise et al. (2015) to compile reasoning about epistemic states into

a classical planning problem. In our setting, each explanatory action can be viewed

as an action with epistemic effects. One interesting distinction to make here is that

the mental model now not only includes the human’s belief about the task state but

also their belief about the robot’s model. This means that the planning model will

need to separately keep track of (1) the current robot state, (2) the human’s belief

regarding the current state, (3) how actions would effect each of these (as humans

may have differing expectations about the effects of each action) and (4) how those
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expectations change with explanations.

Given the model reconciliation planning problem Ψ = 〈MR,MH〉, we will gen-

erate a new planning model MΨ = 〈FΨ, AΨ, IΨ, GΨ, CΨ〉 as follows FΨ = F ∪ FB ∪

Fµ∪{G, I}, where FB is a set of new fluents that will be used to capture the human’s

belief about the task state and Fµ is a set of meta fluents that we will use to cap-

ture the effects of explanatory actions and G and I are special goal and initial state

propositions. We will use the notation B(p) to capture the human’s belief about the

fluent p. We are able to use a single fluent to capture the human belief for each (as

opposed to introducing two new fluents B(p) and B(¬p)) as we are specifically dealing

with a scenario where the human’s belief about the robot model is fully known and

human either believes each of the fluent to be true or false. In this case, we also do

not require any of the additional rules that were employed by Muise et al. (2015) to

ensure that the state captures the deductive closure of the agent beliefs.

Fµ will contain an element for every part of the human model that can be changed

by the robot through explanations. A meta fluent corresponding to a literal φ from

the precondition of an action a takes the form of µ+(φpre (a)), where the superscript

+ refers to the fact that the clause φ is part the precondition of the action a in the

robot model (for cases where the fluent represents an incorrect human belief we will

be using the superscript −).

For every action a = 〈pre (a), add (a), del (a)〉 ∈ AR and its human counterpart

ah = 〈pre (ah), add (ah), del (ah)〉 ∈ AH , we define a new action

aΨ = 〈pre (aΨ), add (aΨ), del (aΨ)〉 ∈ MΨ
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whose precondition is given as:

pre (aΨ) = pre (aR) ∪ {µ+(φpre (a))→ B(φ)

|φ ∈ pre (aR) \ pre (aH)}

∪ {µ−(φpre (a))→ B(φ)|φ ∈ pre (aH) \ pre (aR)}

∪ {B(φ)|φ ∈ pre (aH) ∩ pre (aR)}

The important point to note here is that at any given state, an action in the

augmented model is only applicable if the action is executable in robot model and the

human believes the action to be executable. Unlike the executability of the action in

the robot model (captured through unconditional preconditions) the human’s beliefs

about the action executability can be manipulated by turning the meta fluents on and

off. The effects of these actions can also be defined similarly by conditioning them on

the relevant meta fluent. In addition to these task level actions (represented by the

set Aτ ), we can also define explanatory actions (Aµ) that either add µ+(∗) fluents or

delete µ−(∗).

Special actions a0 and a∞ that are responsible for setting all the initial state

conditions true and checking the goal conditions are also added into the domain

model. a0 has a single precondition that checks for I and has the following add and

delete effects:

add (a0) = {> → p | p ∈ IR} ∪ {> → B(p) | p ∈ IH}

∪ {> → p | p ∈ Fµ−}

del (a0) = {I}

where Fµ− is the subset of Fµ that consists of all the fluents of the form µ−(∗).

Similarly, the precondition of action a∞ is set using the original goal and adds the
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proposition G.

pre (a∞) = GR ∪ {µ+(pG)→ B(p) | p ∈ GR \GH}∪

{µ−(pG)→ B(p) | p ∈ GH \GR} ∪ {B(p) | GH ∩GR}

Finally the new initial state and the goal specification becomes IE = {I} and

GE = {G} respectively. To see how such a compilation would look in practice, consider

an action (move from p1 p2) that allows the robot to move from point p1 to p2 only if

the path is clear. The action is defined as follows in the robot model:

( : a c t i on move from p1 p2

: p r e cond i t i on ( and ( at p1 )

( c l e a r p 1 p 2 ) )

: e f f e c t ( and ( not ( at p1 ) ) ( at p2 ) ) )

Let us assume the human is aware of this action but does not care about the status

of the path (as they assume the robot can move through any debris filled path). In this

case, the corresponding action in the augmented model and the relevant explanatory

action will be:

( : a c t i on move from p1 p2

: p r e cond i t i on

( and

( at p1 )

(B ( ( at p1 ) ) ) ( c l e a r p 1 p 2 )

( i m p l i e s

(µ+
prec ( move from p1 p2 , ( c l e a r p 1 p 2 ) ) )

(B ( ( c l e a r p 1 p 2 ) ) ) ) )

: e f f e c t ( and ( not ( at p1 ) ) ( at p2 )

( not B ( at p1 ) ) B ( at p2 ) ) ) )
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( : a c t i on e x p l a i n µ+
prec move f rom c lear

: p r e cond i t i on ( and )

: e f f e c t ( and µ+
prec ( move from p1 p2 ,

( c l e a r p 1 p 2 ) ) ) )

Finally CΨ captures the cost of all explanatory and task level actions. For now

we will assume that the cost of task-level actions are set to the original action cost in

either robot or human model and the explanatory action costs are set according to

CE. Later, we will discuss how we can adjust the explanatory action costs to generate

desired behavior.

We will refer to an augmented model that contains an explanatory action for each

possible model updates and has no actions with effects on both the human’s mental

model and the task level states as the canonical augmented model.

Given an augmented model, let πE be a plan that is valid for this model (πE(IΨ) ⊆

GΨ). From πE , we extract two types of information – the model updates induced by

the actions in the plan (represented as E(πE)) and the sequence of actions that have

some effect of the task state represented as D(πE) (we refer to the output of D as the

task level fragment of the original plan πE)). E(πE) may contain effects from action

in D(πE). This brings us to our next theorem.

Theorem 12. For a given EA problem Ψ = 〈MR,MH〉 the corresponding augmented

model MΨ is a sound and complete formulation: (1) for every valid π for MΨ the

tuple 〈E(π),D(π)〉 is a valid solution for Ψ and (2) for every valid solution 〈EΨ, π〉,

there exists a corresponding valid plan for π′ forMΨ such that D(π′) = π and E(π′) =

EΨ.

Proof Sketch. The soundness of plans generated from MΨ are guaranteed by the

construction of the model as all the preconditions of the actions in the updated user
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model have to be met in the current plan. To see why the formulation is complete,

consider a solution < EΨ, π > for Ψ. From the procedure for constructing MΨ we

know that there must exist an explanatory action for each possible model difference.

This means that there should exist a sequence of explanatory actions 〈a1, .., ak〉 that

results in the same model updates captured by EΨ. It is easy to see that 〈a1, .., ak〉+π

is a valid plan for MΨ hence proving the assertion.

The planner can automatically find positions of the explanatory actions, but to

avoid any confusion that may arise from belief revisions on the users’ end, we can

enforce some common sense ordering like making any explanation related to an action

to appear before the first instance of that action. This ordering will make sure that

users are not confused about earlier action effects and also helps reduce branching,

making planning more efficient.

Stage of Interaction and Epistemic Side Effects:

One of the important parameters of the problem setting that we have yet to discuss

is whether the explanation is meant for a plan that is proposed by the system (i.e

the system presents a sequence of actions to the user) or are we explaining some

plan that is being executed either in the real world or some simulation the user

(observer) has access to. Even though the above formulation can be directly used

for both scenarios, we can use the fact that the human is observing the execution of

the plans to simplify the explanatory behavior by leveraging the fact that many of

these actions may have epistemic side effects. This allows us to not explain any of the

effects of the actions that the human can observe (for those effects we can directly

update the believed value of the corresponding state fluent and the meta-fluent).1

1This means that when the plan is being executed, the problem definition should include the

observation model of the human (which we assume to be deterministic). To keep the formula-
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This is beyond the capability of any of the existing algorithms in this space of the

explicability-explanation dichotomy.

This consideration also allows for the incorporation of more complicated epistemic

side-effects wherein the user may infer facts about the task that may not be directly

tied to the effects of actions. Such effects may be specified by domain experts or

generated using heuristics. Once identified, adding them to the model is relatively

straightforward as we can directly add the corresponding meta fluent into the effects

of the relevant action. An example for a simple heuristic would be to assume that

the firing of a conditional effect results in the human believing the condition to be

true. For example, if we assume that the robot had an action (open door d1 p3) that

had a conditional effect:

(when ( and ( unlocked d1 ) ) ( open d1 ) )

Then in the compiled model, we can add a new effect:

(when ( and ( unlocked d1 ) )

( and B ( open d1 ) B ( unlocked d1 ) ) )

Even in this simple case, it may be useful to restrict the rule to cases where the

effect is conditioned on previously unused fluents so the robot does not expect the

observer to be capable of regressing over the entire plan.

18.3 Optimality of the Agent

The compilation explored so far only takes into consideration the expectations

the agent has about the safety of the plans (i.e the user would expect any plans

generated to be valid and executable) and does not account for the user’s expectation

tion simple, we ignore this for now. Including this additional consideration is straightforward for

deterministic sensor models.
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on whether the agent should act optimally. In the earlier example, if the agent just

followed the plan that takes the robot through P5 and P6 with a clear passage P5 P6

action with no additional explanatory actions then the user may still be confused why

the agent does not just follow the plan that involves going through P16 to P17 that

it believes to be cheaper (marked in grey in the human’s map).

Even in cases where the action costs are the same for the agent and the human,

we cannot account for such expectations by merely generating optimal plans in the

augmented model. For example, the optimal plan in the augmented model would be

the one through P2 and P3 (the full plan is marked in blue in the robot map) with

one extra explanatory action explain µ+
I clear P2 P3. While the above plan provides

an explanation to ensure validity, ensuring the optimality of the resultant plan would

require the agent to also explain that the passage from P16 to P17 is blocked, which

would clearly be more expensive than choosing the valid plan for any non-zero cost

for explanatory actions.

One approach to address this would be to prune all solutions where the task level

fragment of the plan (D(π)) is suboptimal in the updated human model. A simple

way to enforce this would be to extend the planner to perform an optimality test

for the current plan during the goal test. It may be possible to use more intelligent

pruning to reduce the number of goal tests (e.g. one could leverage the fact that the

optimality test never needs to be repeated for the same set of model updates) and we

could design heuristics that take into account optimality aspects. In this chapter, we

adopt this simple approach as a first step towards modeling these novel behaviors.

18.3.1 Balanced Plans Vs. Agent Optimal Plans

Even when generating plans that preserve the user’s expectations about agent opti-

mality, the agent could generate two types of plans: agent optimal plans (Chakraborti
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et al., 2017) or balanced plans (Chakraborti et al., 2019f). In the first scheme, the

agent chooses to select self-explanatory plans whose task level fragment is going to be

optimal in the original agent model and then choose the minimal explanations that

justifies the optimality plan (i.e the plan is optimal in the user’s updated model).

Such explanations are referred to as Minimally Complete Explanation or MCE (the

agent could also choose among the optimal plans the one that requires the cheapest

MCE). An example would be choosing the plan highlighted in blue in robot model

and then explaining that the path from P2 to P3 is clear and P16 to P17 is blocked.

In the latter scheme, the agent could choose plans that are easiest to explain (here

again we need to ensure that after the explanation the plan is optimal in the updated

model). For example, in the USAR scenario if communication is expensive, it may

be easier to choose the plan to move through P5 and P6 with a clear passage action

since we only need to explain that the passage P16 to P17 is blocked.

In the first case, the agent is effectively prioritizing any loss of optimality over any

overhead accrued by communicating the explanation, while in the second case the

agent accounts for the cost of both the plan it is performing and the explanation cost

(the cost of communication and possibly the computational overhead experienced by

the user on receiving the explanation). By assigning explanatory costs to explanatory

actions we are essentially generating balanced plans but there may be scenarios where

the agent needs to stick to its optimal plan. We can generate such agent optimal plans

by setting lower explanatory action costs. Before we formally state the bounds for

explanatory costs, let us define the concept of optimality delta (denoted as ∆πM) for

a planning model, which captures the cost difference between the optimal plan and
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the second most optimal plan. More formally ∆πM can be specified as:

∆πM = min{v | v ∈ R ∧

6 ∃π1, π2((0 < (C(π1)− C(π2)) < v)

∧ π1(IM) |=M GM ∧ π2(IM) ∈ Π∗M}

Theorem 13. In a canonical augmented model MΨ for an EA planning problem Ψ,

if the sum of costs of all explanatory actions is ≤ ∆πMR
and if π is the cheapest valid

plan for MΨ such that D(π) ∈ Π∗MΨ+E(π), then:

(1) D(π) is optimal for MR

(2) E(π) is the MCE for D(π)

(3) There exists no plan π̂ ∈ Π∗R such that MCE for D(π̂) is cheaper than E(π), i.e.

the search will find an the plan with the smallest MCE.

Proof Sketch. We observe that there exists no valid plan π′ for the augmented model

(MΨ) with a cost lower than that of π and where the task level fragment (D(π′)) is

optimal for the human model. Let’s assume D(π) 6∈ Π∗R (i.e current plan’s task-level

fragment is not optimal in robot model) and let π̂ ∈ Π∗R. Now let’s consider a plan

π̂E for augmented model that corresponds to the plan π̂, i.e, E(π̂E) is the MCE for the

plan π̂ and D(π̂E) = π̂. Then the given augmented plan π̂E is a valid solution for our

augmented planning problem MΨ (since the π̂E consists of the MCE for π̂, the plan

must be valid and optimal in the human model), moreover the cost of π̂E must be

lower than π. This contradicts our earlier assumption hence we can show that D(π)

is in fact optimal for the robot model.

Using a similar approach we can also show that no cheaper explanation exists for

πE and there exists no other plan with a cheaper explanation.

370



Note that while it is hard to find the exact value of the optimality ∆πM, it is

guaranteed to be ≥ 1 for domains with only unit cost actions or ≥ (C2 − C1), where

C1 is the cost of the cheapest action and C2 is the cost of the second cheapest action,

i.e. ∀a(CM(a) < C2 → CM(a) = C1). Thus allowing us to easily scale the cost of the

explanatory actions to meet this criteria.

18.3.2 Disallowing Explicable Plans That Are Too Costly

There could be scenarios where forcing the agent to always choose plans that are

optimal in the human model may not be the best strategy. For example, there may be

cases where we would prefer the agent to deviate from the optimal expected plan if it

results in significant gains. The penalty for deviating from the expected optimal plan

should thus be another optimization criteria. To avoid complexities arising due to

multi-criteria optimization, we will assume the agent is optimizing a single objective

function of the form

C(π) + α ∗ (CMH+E(π)(π)− C∗MH+E(π))

where the second term basically captures the difference between the cost of the current

plan in the resultant model and the cost of the expected plan and α is some scaling

factor to allow linear combination of the two terms. Now with this new objective

function we can define an Optimally Balanced Plan as a plan that is executable in

both robot and the resultant human model and minimizes the above objective.

Definition 46. For a problem Ψ, the tuple 〈EΨ, πΨ〉 is said to be the optimally

balanced solution if,

1. πΨ(IR) |= GR.

2. πΨ(IH) |=MH
GH .
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3. @〈Ê , π̂〉, such that the tuple satisfies (1.) and (2.), and C(Ê) + CMR
(π̂) + α ∗

(CMh+Ê(π̂)− C∗MH+Ê) < C(EΨ) + CMR
(πΨ) + α ∗ (CMh+EΨ(π)− C∗MH+EΨ).

To generate such optimal balanced plans, we need to relax the goal requirement

that the final plan is optimal in the human model. Instead we can incorporate the

inexplicability penalty into the reasoning about the plan, by assigning the cost of a∞

(the goal action) to be α times the cost difference between the optimal plan in the

human model and the current plan. When α is set to zero the problem would just

identify the cheapest plan in the original robot model that is executable in the human

model. We can also use this formulation to generate plans that are still guaranteed

to be optimal in the human model by setting α higher than a threshold κ, where κ is

some upper bound on plan length for the robot (that includes explanatory actions).

18.4 Evaluation

Since the nature of our solution has already been validated in literature through

human factors evaluation – model reconciliation explanation has been studied by

Chakraborti et al. (2019e), balanced plans by Chakraborti et al. (2019f), explicable

plans by Zhang et al. (2017); Kulkarni et al. (2019a), and the use of physical actions

to communicate robot model information by Kwon et al. (2018) – we will focus on

demonstrating the generality of our framework and studying empirically the perfor-

mance of the compilation. The code can be found at http://bit.ly/2Xb7OCp.

18.4.1 Illustrative Example of Cost-tradeoff

We start by demonstrating how our approach can lead to different solution by

altering various costs associated with agent actions. Consider again the USAR domain

described earlier: the models for the robot and the user is provided in the appendix

(the action for opening a door has an epistemic side effect that the observer would
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know that the door is unlocked). We start by assigning a cost of 10 to every robot

action other than clear-rubble action (which is 50) and the move-through-door action

(set to 20). We set the cost of communication action to 1 to start with. The solution

produced corresponds to the blue plan in Figure 18.1.

e x p l a i n s µ+
init c l e a r p 2 p 3 −>

e x p l a i n s µ−init c l ea r p16 p17 −>

move p1 p2−> move p2 p3−> move p3 p4−>

move p4 p11−>move p11 p13−> move p13 p14

−> move p14 p18−> move p18 p17

This plan includes the optimal robot plan and corresponding MCE. Now if

we were to set the cost of communication actions to 100, we see the agent deviating

to plans which on their own may not be optimal – e.g. a plan that involves opening

the door at P8:

e x p l a i n s µ−init c l ea r p16 p17 −>

move p1 p7−> move p7 p8−> opendoor p8 d1−>

movethroughdoor p8 p9 d1−> move p9 p10−>

move p10 p13−> move p13 p14−> move p14 p18−>

move p18 p17

Here the robot does not have to explicitly provide a separate explanation for the

status of the door, but still needs to explain that the path from P15 to P16 is blocked.

Note that this plan is an example of a balanced plan that leverages epistemic side

effects. Now we go one step further and relax the need to assure optimality of the

plan in the human model by changing it from a hard constraint to just a penalty.

This gets us the exact same plan as above but without the explanation about the

blocked corridor from P15 to P16, thus allowing a notion of soft explicability.
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18.4.2 Runtime Complexity

Next we establish how our approach compares in terms of runtime to previous

work. In particular, we will use as reference the optimistic and approximate version of

the balancing approach by Chakraborti et al. (2019f) that identifies only one optimal

plan per search node and the search ends as soon as it finds a node where the optimal

plan produced has the same cost as the robot plan and is executable in the robot

model. This means all the solutions we generate are guaranteed to be better (in

terms of cost) than that generated by the other. For comparison, we selected five

IPC domains and for each domain, we created three unique models by introducing 10

random updates in the model, except in the case of Gripper and Driverlog where only

5 were removed. Each of these five domains were paired with five problem instances

and then tested on each of the possible configurations. Each instance was run with a

limit of one hour, all explanatory actions were restricted to the beginning of the plan

and the cost of explanatory actions were set to be twice the cost of original action.

Table 18.1 lists the time taken to solve each of these problems. For calculating the

average runtime, we used 3600 secs as the stand in for the runtime of all the instances

that timed out. We used h max (admissible) as the heuristic for all the configurations.

The table shows that the new approach does better than the original method

for generating balanced plans for most of the domains. Gripper seems to be the only

domain, where model search seems to perform slightly better but this is also a domain

that had the smallest number of model differences. This indicates that the ability to

leverage planning heuristics can make a marked difference in domains with a large

number of explanatory actions.
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New Compilation Model Space Search

coverage runtime coverage runtime

Blocksworld 13/15 569.38 13/15 2318.73

Elevator 15/15 59.20 1/15 3382.462

Gripper 5/15 2301.90 6/15 2093.54

Driverlog 4/15 2740.38 2/15 3158.59

Satellite 2/15 3186.93 0/15 3600

Table 18.1: Coverage and Average Runtime (Sec) for Explanations Generated for a

Few Standard IPC Domains.

18.5 Related Work

We end with a review of existing literature and emphasize the key differentiators

for our framework.

Epistemic Planning

It is well understood in social sciences that explanations must be generated while

keeping in mind the beliefs of the agent receiving the explanation (Miller, 2017a). As

such, epistemic planning makes for an excellent framework for studying the problem

of generating these explanations. While the most general formulation of epistemic

planning has been shown to be undecidable, many simpler fragments have been iden-

tified (Bolander et al., 2015). In human-aware planning settings too, there is wide

consensus that epistemic planning could be an extremely useful tool. Readers can

refer to Miller (2017b) for an overview of works done in employing epistemic planning

for “social planning”. Recently, there have been a lot of interest in developing effi-

cient methods for planning in such settings (Muise et al., 2015; Kominis and Geffner,
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2015, 2017; Le et al., 2018; Huang et al., 2018). Cohen and Perrault (1979) have also

investigated the use of speech acts in planning problems. Following the conventions

of Cohen and Perrault (1979), the explanatory actions studied within this chapter

can be viewed as INFORM acts.

Model Reconciliation

Among the works related to model reconciliation, the work that is most closely con-

nected to this method is the one discussed in Chapter 17. Unfortunately, the actual

algorithm study there is incomplete and is not guaranteed to produce the least ex-

pensive balanced plan. Even the complete version they hypothesize in their paper

relies enumerating all the possible optimal plans for a given updated model, which

can be extremely inefficient, particularly since it is expected to be performed for ev-

ery possible model in the model space. As we see in the empirical evaluations, our

method (which is also complete) is often faster against the optimistic approximate

version. Moreover the methods discussed in that paper are unable to utilize task-level

actions with epistemic side effect or take into account task level constraints for purely

communicative actions and the effects of execution on an observer, as we illustrate

through examples.

Communicative Actions

Our work also looks at the use of explanatory actions as a means of communicating

information to the human observer. The most obvious types of such explanatory

action includes purely communicative actions such as speech (Tellex et al., 2014) or

the use of mixed reality projections (Chakraborti et al., 2018; Ganesan, 2017). Recent

works have shown that physical agents could also use movements to relay information

such as intention (MacNally et al., 2018; Dragan et al., 2013) and incapability (Kwon
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et al., 2018). Our framework allows for a natural trade-off between these different

types of communication.

Contrastive Explanations and Inferential Capabilities

Many recent works dealing with explanation generation for planning have looked at

characterizing explanations in terms of the types of questions they answer (Fox et al.,

2017; Smith, 2012). This characterization is orthogonal to the question of what type of

information constitutes valid explanations. Putting aside questions regarding observ-

ability, the reason why a user may request an explanation is either due to knowledge

mismatch (incomplete or incorrect knowledge of the task) or due to limitations of

their inferential capabilities. The answer to any of these questions would require cor-

recting the human’s model of the task and/or providing inferential assistance. Works

that have looked at model reconciliation explanations have mostly focused on the

former. Explanations discussed in this chapter can be viewed as an answer to the

question “Why this plan?” (which can also be viewed as a contrastive question of

the form “Why this plan and not any other plan?”). This is not to say that in com-

plex scenarios just the model reconciliation information would suffice, but it would

need to be supplemented with information internal to the model that can address the

differences in inferential capabilities. Use of abstractions (Sreedharan et al., 2018c),

providing refutation of specific foils (Sreedharan et al., 2018c; Valmeekam et al., 2020)

and providing causal explanations (Seegebarth et al., 2012) could be used to augment

model reconciliation.

Explicable Planning

Explicable planning looks at cases where the agent is incapable of updating the users’

expectations and can choose to following the plan that best matches the user expec-
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tations and is valid in the robot model. Two representative works in this direction

are the ones presented by Zhang et al. (2017) and Kulkarni et al. (2019a). Zhang

et al. (2017) investigated scenarios where the human model may be unknown while

Kulkarni et al. (2019a) proposed an iterative planning formalism that tries to find the

most explicable plan by generating all possible valid solutions of a given cost thresh-

old and then tries to find the most explicable plan from that set. Unlike the work

presented here they look at more general distance measures for explicability, some of

which are based on global plan properties. We can extend our current formulation

to take into account such scores by turning these distances into the cost of an extra

GOAL action (similar to the balancing formalism that allows for sub-optimality).

18.6 Concluding Remarks

The chapter presents a unifying formulation for the task of planning in the pres-

ence of users with incorrect mental models of the planning agent’s capabilities. One

of the features of the proposed method is the fact that it places expectation-aware

planning in the realm of epistemic planning, thereby laying the groundwork to study

more complex interaction scenarios including cases with more levels of nesting, uncer-

tainty about mental models, more expressive models, incorporating non-deterministic

effects, and so on. Appendix B contains some discussions on how the framework could

be further extended to support multiple new novel explanatory features. It would also

be worth investigating specific considerations for choosing heuristics or formulating

new ones for such problems.
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Chapter 19

A UNIFYING BAYESIAN FORMULATION FOR MEASURES OF

INTERPRETABILITY

In the previous chapters, we looked at how the agent can account for and leverage

communication during explicable behavior generation. However, it is worth noting

that explicability is not the only interpretability measure that has been studied in

the context of human-robot interaction. Chakraborti et al. (2019c) lists predictability

and legibility as two other important interpretability measures that an agent should

take into account to effectively interact and work with humans. Unfortunately, exist-

ing approaches for generating human-aware agent behaviors have considered different

measures of interpretability in isolation. Further, these measures have been stud-

ied under differing assumptions, thus precluding the possibility of designing a single

framework that captures these measures under the same assumptions. In this chapter,

we present a unifying Bayesian framework that models a human observer’s evolving

beliefs about an agent and thereby define the problem of Generalized Human-Aware

Planning. We will show that the definitions of interpretability measures like explica-

bility, legibility and predictability from the prior literature fall out as special cases of

our general framework. Through this framework, we also bring a previously ignored

fact to light that the human-robot interactions are in effect open-world problems, with

respect to the human’s beliefs about the agent. The human may hold beliefs unknown

to the agent and may also form new hypotheses about the agent when presented with

novel or unexpected behaviors.
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19.1 Background

In this chapter, we will be agnostic to specific planning formulations or represen-

tations when discussing the agent’s model. Instead, we will use the term “model” in

a general sense to not only include information about agent actions and transition

functions, but also their reward/cost function, goals and initial state. We will assume

that the model can be parameterized and use θi(M) to characterize the value of a

parameter θi for the model M.

Since we are interested in cases where a human is observing an agent acting in the

world, we will mainly focus on agent behavioral traces (instead of plans or policies).

A behavior trace τ in this context will consist of a sequence of state, action pairs.

The likelihood of the sequence given a model will take the form P` : M× T → [0, 1],

where M is the space of possible models and T is the set of behavioral traces that the

agent can generate. While we will try to be agnostic to likelihood functions, a fairly

common approach Fisac et al. (2018); Baker et al. (2007) is a noisy rational model

based on the Boltzmann distribution: P`(M, τ) ∝ e−β×C(τ). Where C(τ) is the cost of

the behavior and β ∈ R+ is a parameter that reflects level of perceived determinism

in the agent’s choice of plans Baker et al. (2009). Note that in our case, a likelihood

function captures both the human’s expectations about the agent’s computational

capabilities and their own cognitive limitations. Thus noisy-rational models like the

one mentioned above are particularly useful in our scenario. For example, by setting

a low β value we could possibly capture the fact that the observer may not be able

to correctly differentiate between strategies of relatively similar costs.

For the human-aware scenario, we are dealing with two different models Dragan

(2017); Sreedharan et al. (2021a); Reddy et al. (2018): the model that is driving

the agent behavior (denoted MR) and the human’s belief MR
h about it. We make
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no assumptions about whether these two models are represented using equivalent

representational schemes or use the same likelihood functions. This setup assumes

that while the human may have expectations about the agent’s model, she may have no

expectation about its ability to model her. Thus she isn’t actively expecting the agent

to mold its behavior to what she thinks the agent knows about her, thereby avoiding

additional nesting of beliefs.

19.2 Running Example

In our running example, we will consider a robotic office assistant (Figure 19.1),

that can perform various repetitive tasks in the office, including picking up and deliv-

ering various objects to employees, emptying trash cans, and so on. Further, we will

assume it can only move in three directions: down, left and right; and that it can not

revisit a cell. These restrictions allow us to control the set of possible completions of a

given plan prefix. You, as the floor manager, are tasked with observing the agent and

making sure it is working properly. Given your previous experience, you have come

to form expectations about its capabilities and its tasks: e.g. you may think that the

goal of the agent is to either deliver coffee or to deliver mail to a room (represented

by the door), though you know that there may be other possible goals that you have

not considered. Unbeknownst to you, the agent is trying to deliver coffee and it needs

to do this while keeping in mind your beliefs about it. This scenario is particularly

designed to accommodate the considerations made by prior works on interpretable

behaviors. Throughout this chapter, we will revisit this example to show different

behaviors.
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Figure 19.1: An Illustration to Show Different Interpretable Behaviors. Here the

Agent Only Moves in Three Directions: Down, Left and Right; And It Does Not

Revisit a Cell.

19.3 A Unified Framework

The ability to anticipate and shape a human’s beliefs about the agent, is a central

requirement for any successful human-aware agent. So we start with a framework to

capture the human’s reasoning about their beliefs about the agent. In particular, we

will adopt a Bayesian model of the human’s reasoning process (Figure 19.2). This

is motivated by both the popularity of such models in previous works in observer

modeling and existing evidence to suggest that people do engage in Bayesian reason-

ing L Griffiths et al. (2008). The node MR
h represents possible models the human

thinks the agent can have, τpre corresponds to the behavior prefix that they observed

(in this chapter we will assume full observability), and τpost corresponds to possible
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completions of the prefix.1

In addition to explicit models that the human thinks are possible for the agent,

we also allow for the possibility that the human may realize that she in fact doesn’t

know the exact agent model. That is, her previously held beliefs about the agent

may not be sufficient to explain or justify the observed behavior. We incorporate

this assumption by adding a special model M0 to the set of models in MR
h , that

corresponds to the hypothesis that the agent model is not one of the models that

the human expects.This allows for open-world reasoning since the human can form

additional hypotheses about the robot and is not limited by the explicit set she

originally has. This strategy of introducing a specific hypothesis that corresponds to a

previously unexpected entity has been commonly used to model scenarios where there

is a possibility of a novel or previously unknown event happening (c.f. Zabell (1992)).

We represent M0 using a high entropy model: i.e. the likelihood function of this

model assigns a small but equal likelihood to any of the possible behaviors, including

the ones facilitated by other models. This can be viewed as a model belonging to a

random agent. We assume that the human, by default, assigns smaller priors to M0

than other models. We can now define the following problem:

Definition 47. A Generalized Human-Aware Planning Problem (G-HAP) is a tuple

ΠH = 〈MR,MR
h , P

0
h , P`, CH〉, where P 0

h is the human’s initial prior over the models

in the hypothesis set MR
h and CH is a generalized cost function that depends on the

exact objective of the agent.

A solution to G-HAP consists of a behavior that is valid in MR and minimizes

CH. In the most general setting, CH would be a mapping from entire behavior to

a cost. Though internally CH may be a function that takes into account each of

1In this chapter, we focus on quantifying these measures for one shot or episodic interactions only,

rather than longitudinal ones. In Section 19.4, we discuss more about longitudinal interactions.
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Figure 19.2: Graphical Representation of the Human’s Model.

the intermediate steps (not just in MR but also the other models in MR
h ). While

the exact form would depend on the specific agent objectives, in general the cost

function may need to consider (1) costs of the action in the sequence in MR and

their counterparts in each of the models in MR
h (2) the state induced by the action

in each model (3) possible completions at each intermediate step and their relation

to the actual behavior and (4) the beliefs over MR
h it may induce. Rather than

investigate the space of all possible cost functions, we will ground the discussion

by focusing on scenarios and objectives previously studied in the literature. We

will see how this specialization of the framework, naturally gives rise to the specific

interpretability measures. Throughout the discussion we will use the notations τ ipre

and τ ipost for a complete behavior τ to represent the behavior prefix that would have

been observed and the behavior postfix remaining to be executed for a timestep i

respectively. The overall framework presented in the chapter is summarized in

Figure 19.3. It illustrates that a human that could hold multiple hypotheses about

the agent and show how the various existing measures could be extended to this more

general setting. Explicability, in this case, becomes the human’s confidence that

they can explain the robot behavior with one of the explicit hypothesis they have

regarding the robot, while legibility maps to their specific confidence that the robot

model actually includes some parameter (which is, in fact, present) and predictability
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Figure 19.3: An Overview of Our Unifying Framework. The Human Holds Multiple

Hypotheses about the Agent and She Uses the Observed Behavioral Prefix to Update

Her Beliefs about the Model. Each of the Interpretability Measure Optimizes for

Specific Inferential Outcomes in This Framework.
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turns into a measure of confidence they assign to the actual future behavior the robot

is going to generate. Below we will look at each of these individual measures in more

detail and see how they arise from G-HAP.

19.3.1 Explicability

We will start by looking at cases where the agent wants to avoid behaviors that

may confuse the observer about the agent model. That is the human should be able

to explain the observed behavior with the explicit models they hold. We will refer

to such behaviors as explicable behaviors. We can capture the generation of such

behavior within our framework by using a cost function that is proportional to the

posterior probability associated with model M0, i.e.,

CH(τ) ∝
∑
i

αiP (M0|τ ipre) (19.1)

Where αi ≥ 0 is the weight associated with each timestep i. This means the formu-

lation would prefer behavior with high likelihood in the explicit models for timesteps

with non-zero weight. We will define the explicability score (E) associated with a

behavior prefix (τpre) to be directly proportional to one minus this probability, i.e.,

E(τ ipre) ∝
∑

M∈MR
h \{M0}

P (M|τ ipre) (19.2)

Likelihood functions that assign high probabilities to optimal (or low cost traces),

give rise to traces like P1 and P2 in Figure 19.1, since they correspond to optimal

plans in the explicit models considered in the example (i.e. the model for delivering

coffee or delivering mail).

Reduction to Previous Explicability Definitions

Previous works generally identify a behavior to be explicable if it meets the human’s

expectation from the agent for the given task Zhang et al. (2017). In the binary form
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this is usually taken to mean that a plan is explicable if it is one of the plans that

the human expects from the agent Chakraborti et al. (2019f). In the more general

continuous form, this expectation is taken to be proportional to the distance between

the observed trace and the closest expected behavior Kulkarni et al. (2019a); Zhang

et al. (2017):

τ ∗E = arg min
τ

δ(τ, τEMR
h

) (19.3)

where δ is some distance function between two plans and τEMR
h

is the closest expected

behavior for the modelMR. While there is no consensus on the distance function or

expected behavior, a reasonable possibility for the expected set is the set of optimal

plans Chakraborti et al. (2017) and the distance can be the cost difference Kulkarni

et al. (2020).

To see how our framework subsumes earlier works, lets start by plugging in the

two assumptions made by the original works, namely (1) the human only has one

explicit model about the agent (i.e. MR
h = {MR

h ,M0}) and (2) the explicability is

measured over the entire plan (i.e. αi = 0 for all i other than the last step). Thus

the cost function is dependent only on the explicability of the entire behavior

E(τ) ∝ P (MR
h |τ) ∝ P (τ |MR

h ) ∗ P (MR
h ) (19.4)

Since the observed prefix is the entire plan, we can directly use the likelihood function

E(τ) ∝ P`(MR
h , τ) ∗ P (MR

h ) (19.5)

Let us consider two plausible likelihood models. First, for a normative model where

the agent is expected to be optimal, P`(MR
h , τpre) assigns high but equal probability

to all the optimal plans and 0 probabilities for the others. This is the original binary

explicability formulation used by Chakraborti et al. (2019f,e).
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Another possible likelihood function is a noisy rational model Fisac et al. (2020)

given by:

P`(MR
h , τ) ∝ e−β×C(τ) ∝ eβ×C(τ∗)−C(τ) (19.6)

where τ ∗ is an optimal behavior in MR
h , C(τ) ≥ C(τ ∗) ≥ 0 for MR

h . This maps

the formulation to the distance based definition as in Kulkarni et al. (2020) where a

cost-based distance is defined. We can also recover the earlier normative model by

setting β →∞ and model M0 by setting β = 0.

Going back to the original motivation of explicability, it was meant to capture the

human’s understanding of the agent’s behavior generation process (which includes

both its perceived model and computational component). Earlier formulations rely

on using the space of expected plans as a proxy of this process. This is further sup-

ported by the fact that the works that have looked at updating the human’s perceived

explicability value of a plan do so by providing information about the model and not

by directly telling the human what plans to expect Chakraborti et al. (2017, 2019f);

Sreedharan et al. (2020a). Thus our formulation of explicability directly in terms of

the human’s beliefs about the agent’s model connects to the original motivation of

explicability definitions.

Novel Properties of Generalized Explicability

An interesting side-effect of a probability-based explicability formulation is that, the

probability of behavior and hence the explicability score can now be affected by the

presence or absence of other plans. For example, consider two scenarios, one where

MR
h containsM1 andM0 and another where it containsM2 andM0. Now consider

a behavior trace τ that is equidistant from an optimal plan in both models M1 and

M2. Even though they are at the same distance, the trace may be more explicable
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in the first scenario than in the second, if the second scenario allows for more traces

that are closer. Assuming the probability of choosing optimal plans isn’t reduced,

introducing new plans into the sample space better than the current trace would

cause more probability to be assigned to those and thus less to the trace in question.

We argue that this makes intuitive sense for explicability since the user should be

more surprised in the second scenario as the agent would have ignored many more

behaviors that the observer would have considered desirable. Figure 19.4 illustrates

such an example.

Proposition 40. Explicability of a trace is dependent not only on the distance from

the expected plans but also on the presence or absence of plans close to the expected

plans.

Here the plan remains explicable whether or not the observation leads to all the

probability being assigned to a single model versus being distributed across multiple

models. This means that the formulation doesn’t require the human to have a single

explanation for the behavior, rather it allows their belief to be distributed across

multiple hypotheses. While the exact values would depend on the likelihood function,

in the office robot scenario our formulation would assign high explicability scores

(need not be the same) to both P1 and P2. For P1, the probability mass would be

distributed across the two possible hypotheses corresponding to the two goals, while

for P2 the probability mass is centered around the model corresponding to the goal

to fetch coffee.

Proposition 41. Explicability is agnostic to whether it is supported by multiple mod-

els or by a single one.

Further, the explicability of a trace is now controlled by the priors on the mod-

els. E.g., a trace that is only possible in a model with low prior will not have high
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Figure 19.4: A Possible Scenario, Where the Introduction of New Plans Could Cause

the Explicability to Drop.
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explicability score even if it is highly likely in that model.

19.3.2 Legibility

The next class of behavior is the one where the agent is trying to choose behavior

that increases the agent’s belief about some component (captured by the parame-

ter θ) of the agent model. Such behavior could be especially important when the

achievement of the human’s desired outcome is tied directly to the model possessing

a certain parameter value. An obvious example would be establishing if the end-goal

itself is what the human desires, but this could also be in relation to other model

parameters. Thus inducing high confidence in relation to such model parameters in

the human’s mind could be tied intimately with engendering trust in the human that

the agent can achieve the desired objectives.

CH(τ) ∝
∑
i

αi ∗ (1− P (θ = θ(MR)|τ ipre)) (19.7)

That is the cost here becomes the weighted sum of the probability associated with

the target parameter having the incorrect value (i.e. different from what is true in

the robot model) at each step. Keeping with the existing literature, we will refer to

such behaviors as legible behavior, with the actual legibility score of a behavior prefix

being proportional to the probability of the parameter being the true value

Lθ(τpre) ∝ P (θ = θ(MR)|τpre) (19.8)

∝ ΣM∈MR
h \{M0} Where θ(MR)=θ(M)P (M|τpre) (19.9)

We skip M0 since it doesn’t correspond to an explicit model in the human’s mind.

In the context of Figure 19.1, a plan prefix with high legibility score for the goal of

deliver coffee would be P2 as compared to the other options illustrated. Since P1,

allows for an optimal completion for both objectives and P3’s completions in both
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models are equally bad. As we will see, while original formulations might assign P4 as

a more legible option given the fact that it would assign zero probability to delivering

mail, our formulation allows for the possibility that P4 may lead to more probability

getting assigned to M0.

Reduction to Previous Legibility Definitions

Legibility was originally formalized Dragan et al. (2013) as the ability of a behavior

to reveal its underlying objective. This involves a human who is considering a set of

possible goals (G) of the agent and is trying to identify the real goal by observing

its behavior. Legibility is, thus, the maximization of the probability of the real goal

through behavior:

τ̂ ∗L = arg max
τpre

P (GR|τpre) (19.10)

where GR is the agent’s true goal. While originally introduced in the context of

motion planning, this was later adapted to task planning by MacNally et al. (2018),

and generalized to implicit communication of beliefs when the human has partial

observability by Kulkarni et al. (2019b) as well as to implicit communication of any

model parameter by Miura and Zilberstein (2020).

To keep the discussion in line with previous works, we will focus our attention

on communicating end-goals (over arbitrary parameters). Some central assumptions

made by earlier works is that the model only differs in terms of the end goal and

the actual model is part of the set (MR ∈ MR
h ). Also, the agent is expected to

communicate its information as early as possible, so earlier αi terms are given higher

weights than the latter ones. They also assume that at no point would the human

consider goals outside the explicit ones she had in mind. That is the possibility that

she may be wrong about the original model and that the agent may be possibly trying
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to achieve something she didn’t consider before would never cross her mind. In our

framework, this would correspond to assigning a zero prior toM0. Thus the legibility

score here would be

Lθ(τpre) ∝ P (MR|τpre) (19.11)

A zero prior onM0 means the agent can create extremely circuitous routes as legible

behavior provided the behavior is more likely in the agent model than others. This

means that regardless of how suboptimal the plan is in the agent model (or ones with

the parameter value), given its even lower probability in other models (or for other

parameter values) the agent model will get assigned higher posterior probability and

thus higher legibility score. For example in Figure 19.1, the restricted formulation

would select the prefix P4 highlighted in red in order to reveal the goal of delivering

coffee, eventhough that corresponds to an extremely sub-optimal plan given the set

of possible plans.

Novel Properties of Generalized Legibility

A core assumption relaxed by the general formulation is that we now allow for the

possibility that the human could be surprised by unexpected behavior and they may

form new hypotheses about the agent. If you assume a non-zero prior for M0, then

in cases where the agent presents an extremely suboptimal behavior they have a new

hypothesis they can consider. That is they can now shift some of their belief to

the fact that they may have been originally wrong about the agent model. Going

back to the case of route P4 in Figure 19.1, given how far it is from the optimal,

any completion of that prefix would have extremely low likelihood in the model for

delivering coffee as opposed to M0 where that path is as likely as any other. This

means our formulation now assigns more weight to M0 and thus capturing the fact
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that, when presented with highly unlikely behavior, the observer may question their

beliefs about the agent. This brings us to the property

Proposition 42. Inexplicable plans are also illegible.

We believe allowing for such uncertainty is essential to capture more realistic

human-robot interaction as it is rare for people to have absolute certainty about

the agent models (and even discard the possibility that something might have just

gone wrong with the agent). Also if we wish to move to a more longitudinal setting,

indicating that the human no longer believes in one of the possible hypotheses in the

set may not be enough, but we may need to explicitly try to identify what the newly

formed hypothesis might be.

19.3.3 Predictability

The final case is one where the agent is interested in communicating to the human

the future behavior it will be selecting. In this case, the agent would be required

to choose behavior prefixes that allow the human to correctly guess the rest of the

behavior the agent will follow with high confidence. This may be useful in cases where

the agent may be sharing a workspace with the observer and may want to allow the

observer to take into account future agent actions when coming up with their plans.

CH(τ) ∝
∑
i

αi ∗ (1− P (τ ipost|τ̂ ipre)) (19.12)

This gives us predictable behavior. Further, P (τ ipost|τ̂ ipre) denotes the predictability

score for the prefix τ ipre (with respect to the completion τ ipost)

Pτ ipost(τ ipre) ∝ P (τ ipost|τ ipre)

∝
∑
M∈MR

h

P (τ ipost|τ ipre,M)× P (M)
(19.13)
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From Figure 19.1, a plan prefix with high predictability would be P3. Given the

prefix P3, the completion of going down the corridor has the highest likelihood for

both the goals. So after marginalizing across all possible models that completion will

have high probability and therefore the prefix has high predictability.

Reduction to Previous Predictability Definitions

We need to incorporate two main assumptions into the framework to reduce it to

existing definitions of predictability: (1) the human observer only has a single explicit

model about the agent and this is equal to the actual agent model MR
h = {MR,M0}

and (2) the user will not form new hypothesis about the agent regardless of how

unexpected the behavior is (i.e. the M0 prior is zero). Thus we get:

Pτ (τpre) ∝ P (τ ′ = τ |τpre,MR) (19.14)

This directly maps to the predictability measure as defined in earlier works Fisac

et al. (2020). Previous works have also looked at the possibility of generating k step

predictable plans, i.e., plans that try to guarantee predictability only after k steps.

This allows for the system to choose unlikely prefixes for cases where the agent is only

required to achieve required levels of predictability after the first k steps. We can

capture such optimization preferences by setting αi to zero for all but i = k. Going

back to the example, prefix P3 optimizes for predictability for k = 5.

Generalized Predictability

Our generalization introduces two new aspects to the predictability formulation. The

fact that the human now considers potential models and we also introduce the new

hypothesis M0. However, the formulation marginalizes out the model and thus,

effectively, for a given prefix, the human observer has to consider all the possible
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completions of the prefix in each of the individual models. Thus even if the trace is

perfectly predictable in an individual model, the fact that the human has uncertainty

over the models means the prefix may not be predictable. On the other hand, the

fact that M0 assigns equal probability to all the possible completions would mean

that the introduction of this new hypothesis would have less of an influence on the

resulting predictability score.

19.3.4 Deception and Interpretability

The interpretability measures being discussed involve leveraging reasoning pro-

cesses at the human’s end to allow them to reach specific conclusions. At least for

legibility and predictability, the behavior is said to exhibit a particular interpretability

property only when the conclusion lines up with the ground truth at the agent’s end.

But as far as the human is concerned, they would not be able to distinguish between

cases where the behavior is driving them to true conclusions or not. This means

that the mechanisms used for interpretability could be easily leveraged to perform

behaviors that may be adversarial Chakraborti et al. (2019c). Two common classes

of such behaviors are deception and obfuscation. Deceptive behavior corresponds to

behavior meant to convince the user of incorrect information about the agent model

or its future plans Masters and Sardina (2017):

DMR
h (τpre) ∝ −1 ∗ P (MR|τpre) (19.15)

Adversarial behaviors meant to confuse the user are either inexplicable plans that

increase the posterior on M0 or, plans that actively obfuscate Keren et al. (2016);

Kulkarni et al. (2019b):

OMR
h (τpre) ∝ H(MR

h |τpre) (19.16)
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This is proportional to the conditional entropy of the model distribution given the

observed behavior.

With explicability, the question of deceptive behavior becomes interesting, since

explicable plan generation is relevant when the actual agent model may not be part

of the human’s expected set of models (else the agent could just follow its optimal

behavior). By choosing to generate plans that align with a non-true model, explica-

bility can be seen as deceptive behavior as it is reinforcing incorrect notions about

the agent’s model. Such plans would have a high deceptive score per the formulation

above (since P (MR|τ) = 0). One can argue that explicable behaviors are white lies

in such scenarios as the goal here is just to ease the interaction and the behavior is

not driven by any malicious intent. One could even further restrict the explicability

formulation to a version that only lies by omission by restricting the agent to just

behavior optimal in the original agent model. The agent chooses from this set the one

that best aligns with the human’s expectation. It is a lie by omission in the sense that

while the agent has not explicitly been deceptive, by choosing behavior that aligns

with the human’s expectations, it is maintaining the human’s incorrect beliefs.

19.4 Implications of the Framework

Below we briefly discuss several implications of our unifying framework.

Legibility, Explicability. These notions are related to the human’s desire to rec-

ognize the model Aineto et al. (2019)). Our formulation shows that outside limited

cases, legibility, and explicability are closely connected. Earlier works have been sep-

arating these measures by assuming away either legibility, like in existing explicability

works with the human’s hypothesis consisting of a single model Zhang et al. (2017);

Kulkarni et al. (2019a), or by assuming away explicability by assigning zero prior on
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M0 for legibility Dragan et al. (2013); Dragan and Srinivasa (2013); MacNally et al.

(2018); Kulkarni et al. (2019b); Miura and Zilberstein (2020). Interestingly, in cases

where the human is aware that the agent is trying to be legible or more generally

they know the agent is trying to model the observer, the human may be more open

to suboptimal behavior from the agent as they might attribute it to the agent trying

to communicate. However, this does not eliminate M0 but instead introduces a new

level of nesting for reasoning. This comes with all the known complexities and pit-

falls of reasoning with nested beliefs Fagin et al. (2003). Though studying a limited

amount of additional nesting could be important especially in cases where the agent

plans to leverage communication. Since communication strategies make the most

sense when the human is expecting the agent to model them.

Longitudinal Interactions. Our formulation currently looks at interpretability

metrics for one-off interactions only. In cases where a human interacts with the agent

for a long period, we can expect the user to start with a uniform distribution over

models and a low probability for M0. In order to take a more long-term view of

the human’s interaction with the same agent (say, over a time horizon), legibility

and predictability measures can be handled by directly carrying over the posterior

from each interaction to the next one. However, for explicability more care needs to

be taken. For example, Kulkarni et al. (2020) hypothesize a possible discounting of

inexplicable behavior. The paper argues that after the first inexplicability, a human

would be less surprised when similar inexplicable behavior is again presented to her.

Part of this discounting can be explained by the human forming new hypothesis that

explain the unexpected behavior and using that to analyze future agent behavior.

As mentioned earlier, going to a longitudinal setting may require introducing new

mechanisms to identify such newly formed hypothesis.
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Planning and Environment Design. One of the next logical steps would be to

facilitate the generation of plans that maximize the measures described in the chap-

ter. In particular, we could build on the work done in Chapter 18 to encode the

human’s belief about the task into the planning space. Though in this case, given the

possible multiple hypotheses held by the human, we would have to consider a belief

space formulation, where the state includes information about the various models and

each one is associated with a probability. Now each action of the robot has an effect

on the likelihood of each hypothesis. Also unlike the earlier formulations, we can’t

just have a cost associated with each action or even one that is state-dependent. In

fact for measures like predictability, not only does the plan cost for an intermediate

step depend on the current state but also the eventual path that will be followed by

the robot. As such these costs can only be computed at each goal node, where a

cost will be assigned to each step of the path to the goal. These formulations could

also be used to design the environment to facilitate easy generation of behavior that

naturally aligns with these objectives (similar to Kulkarni et al. (2020)).

Goal/Plan/Model Recognition and Interpretability. This chapter focuses on

scenarios where the agent is acting in the world, with the knowledge that it is being

observed. Though there could well be scenarios where the agent may be the observer

and trying to reason about the human’s model. In these settings, the agent may be

engaged in similar reasoning to what is expected of the human in this chaptter. Chief

among them is the case of model recognition Aineto et al. (2019) and it’s more popular

special case of goal recognition Baker et al. (2007); Ramı́rez and Geffner (2009). In

a way this could be viewed as the inverse of the legibility as studied in this chapter

and is also associated with explicability. Though in most cases these papers assume

away the possibility of the agent being surprised by assuming that the candidate
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hypothesis set contains the target model/goal that generated the behavior. But as

the community starts shifting to more open-world cases or allow for the possibility of

novel behavior Senator (2019), we will need to allow for the possibility that our agents

may come across truly novel and inexplicable behavior (as per previous beliefs) and

enable them to detect and update their beliefs from such behaviors. The next related

class of abductive reasoning problems that have been studied in the literature is that

of plan recognition Kautz and Allen (1986), wherein the agent tries to identify the

full plan/behavior from some observations. One could consider this to be the inverse

of the predictability problem studied in this chapter.

Generalized Collaborative Behavior. One of the goals of the generalized human-

aware planning problem is to establish the fact that specific interpretability behaviors

could naturally be generated by an agent capable of reasoning about the human’s

belief and the impact of its actions on these beliefs. Though studying individual

measures are still helpful not only in creating more specialized algorithms for gen-

erating them but also for understanding general strategies the agent may engage

in. In this vein, we could further generalize most of the interpretability strategies

the agent could engage in, to two broad categories, namely, a model-communication

strategy or a model-following strategy. Model-communication involves molding the

human’s expectation through implicit or explicit communication, to allow the agent

to achieve their objectives. On the other hand, the model following strategy involves

taking the current understanding of the human and generating behavior that con-

forms to current human expectations. One could see the agent engaging cyclically

in model-communication and model-following behaviors or possibly a combination of

the two (for example involving actions that may have epistemic side-effects), wherein

the agent may choose to mold the user’s expectations to a point where their behavior
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may be better received by the observer. Legible behavior and explanations Sreedha-

ran et al. (2020a) could be understood as specific instances of model communication

strategies, while explicability can be seen as an example of a model following behav-

ior. Predictability is a bit harder to place, as at any point the agent is following the

most likely plan as per the human’s beliefs. Though the agent may have previously

engaged in behavior meant to limit its future behaviors (including using techniques

like projection Chakraborti et al. (2018)). One could definitely argue that these ear-

lier efforts are in fact communicative in so far as they are trying to inform the human

about the agent’s intentions.
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Part V

POLICY SUMMARIZATION
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Chapter 20

PART-V OVERVIEW

In the previous chapters of this thesis, we looked at the question of how one could

explain the decisions and plans that are to be explained. However, before the explana-

tory dialogue can start the robot needs to communicate its plan to the user. This is

especially important if the explanatory dialogue needs to occur before the robot can

execute the plan. This communication becomes even more challenging when one con-

siders more general planning formalisms like stochastic planning, where the solution

takes the form of policy which needs to account for the various contingencies that

may arise. In this part, we will look at the use of abstraction as a way to effectively

communicate policies in such cases.

20.1 Structure for Part III and Technical Contributions

This part will only contain the description of one method

1. Chapter 21: In this chapter, we investigate the utility of temporal abstractions

derived through analytically computed landmarks and their relative ordering to

build a summarization of policies for Stochastic Shortest Path Problems. We

formalize the concept of policy landmarks and show how it can be used to

provide a high level overview of a given policy. Additionally, we establish the

connections between the type of hierarchy we generate and previous works in

temporal abstractions, specifically MaxQ hierarchies. The approach is evaluated

through user studies as well as empirical metrics that establish that people tend

to choose landmarks facts as subgoals to summarize policies and demonstrates
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the performance of our approach on standard benchmarks.

20.2 Important Takeaways

I would argue that the problem of summarizing decisions is a problem that is

specifically tied to sequential decision-making. After all, in many one-shot decision-

making settings like classification or regression the problem of communicating the

decision is relatively straightforward. The idea of using abstractions as a way to

summarize policies has been considered by other works, particularly in the context of

reinforcement learning (cf. (Topin and Veloso, 2019; Zahavy et al., 2016)). However,

many of these works tend to characterize these summaries as explanations in them-

selves. In this thesis, all the explanations presented could be understood as answers

to Why questions. This is a stance that also aligns with the consensus from social

sciences on the nature of everyday explanations (Miller, 2017a). I have thus chosen to

separate policy summaries into a distinct category, as this information may be best

understood as an answer to a What question (specifically what is the agent trying to

do?). Landmarks have also been used to generate summaries for classical planning

problems (Grover et al., 2020a; Sreedharan et al., 2021b). However, these works tend

to use problem-level landmarks, which are not plan-dependent. A more interesting

parallel between policy landmarks and methods used in classical planning is the one

established by (Sreedharan et al., 2022b). This paper shows that policy landmarks

and their ordering include information about causal links and one could extract causal

links from policy landmarks for deterministic plans.
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Chapter 21

TLDR: POLICY SUMMARIZATION FOR FACTORED SSP PROBLEMS USING

TEMPORAL ABSTRACTIONS

In this chapter, we will look at ways to effectively present the policy at a high-level

of abstraction, while still allowing the users to delve into details as required. In this

chapter, we will look at ways to effectively present a summary of the policy at a high-

level of abstraction, while still allowing the users to delve into details as required.

Our choice of summarization techniques were motivated by three main factors (1)

People tend to decompose long horizon planning into sequences of subgoals. This

is a well-known fact in psychological literature and has been validated by number

of studies (c.f. (Donnarumma et al., 2016; Cooper and Shallice, 2006; Simon and

Newell, 1971)); (2) The approach shouldn’t assume that the user is an expert in the

domain or has prior knowledge about the dynamics of the domain, since the method

is a preceding step for explanations; and (3) The approach shouldn‘t assume it is

summarizing optimal policies.

With these design principles in mind we introduce our approach: Temporal Ab-

straction Through Landmark Recognition or TLdR. TLdR hypothesizes that one

way to extract useful temporal abstractions for a given policy is to identify sets of

bottleneck or landmarks facts and their relative ordering that needs to be satisfied by

any valid execution of the given policy. We believe our work represents the first for-

malization of landmarks for stochastic domains. We also introduce the idea of policy

landmarks along with compilation-based methods to generate these landmarks with

formal guarantees. This chapter will focus on Stochastic Shortest Path problems

(SSPs) since their goal-directed nature is more natural for everyday users (Newell
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et al., 1972) as well as being more general than infinite horizon discounted MDPs.

Once identified, end users can use these landmarks as the basis for generating their

explanatory queries (of the form discussed in (Miller, 2017a)) or can further drill

down by focusing on specific landmarks to get more details.

The rest of the chapter is structured as follows: Section 21.1 starts with a brief

overview of related works in this space and then Section 21.2 introduces the setting

and some of the formalisms we will be using throughout the chapter. Section 21.3

introduces a simple illustrative scenario that will act as our running example and

Section 21.4 will delve into the details of our methods. Through Section 21.5 we will

further investigate the specifics of the hierarchy we are generating and we discuss the

evaluations we performed in Section 21.6.

21.1 Related Work

In recent years there has been increasing interest in the problem of explainable AI

in general and also specifically for explaining/summarizing policies. While many of

these works focus on policies learned through neural networks (cf. (Greydanus et al.,

2018)), there are a few works that have considered factored MDP settings as well (cf.

(Khan et al., 2009)).

In the context of policy summarization, Lage et al. (2019) presents an approach

that tries to identify a subset of state action tuples that can help users guess the rest

of the policy. The tuple is selected under some assumptions about the computational

model the user may be making. Unfortunately, such works that aims to generate

summaries optimized for policy completion assume the user has some prior knowledge

about the task. Our motivation in this work is to provide summaries that could act

as a first step before providing more explanations about the task. Consequently, we

address scenarios where the user may be unaware of task details or may misunderstand
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the the task (similar to explanatory settings studied by Chakraborti et al. (2017) and

Sreedharan et al. (2018c)).

Topin and Veloso (2019), utilize state abstractions to simplify policies. This is

completely complementary to our approach and we can use methods described in that

paper along with ours to identify landmarks in abstract state spaces (cf. (Sreedharan

et al., 2019b) for similar strategies applied to classical planning setting). Hayes and

Shah (2017) have also looked at producing summaries specific to user questions.

In MDP literature, people have previously used landmarks in different contexts, for

example Ramesh et al. (2019) uses the term landmark as a way to denote prototypical

state and Kaelbling (1993) uses landmarks to refer to centers of a region of the

environment. Options learning literature (cf. (McGovern and Barto, 2001; Stolle and

Precup, 2002)) have also used the term bottleneck states to refer to states that appear

frequently in valid execution traces. They utilize such states as a basis for learning

options and as we will see this is closely related to the techniques discussed in the

chapter. The idea of bottleneck states are also related to landmarks as discussed in

classical planning literature (Hoffmann et al., 2004).

21.2 Background

We will focus on cases where the planning problem corresponds to an SSPs0 ,

i.e a stochastic shortest path problem with a single initial state (Kolobov et al.,

2012). In the rest of the chapter when we refer to MDPs we will be in fact referring

to an SSPs0 . Similar to Section 2.3, the model will be formally defined by the

tuple M = 〈S,A, T, C,G, s0〉, where S is the set of states, A is the set of actions,

T : S × A → [0, 1] defines the transition function corresponding to the MDP, while

C captures the cost function, G the set of goal states, and s0 the initial state. For

this setting, we are generally interested in policies that guarantee that any history
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sampled from the policy will eventually lead to a goal state with probability one, such

policies are generally referred to as proper policies. Moreover, the fact that we are

given an initial state means that we only need to identify actions for states that are

reachable from from s0 under π0, hence we can restrict our attention to partial proper

policies (Kolobov et al., 2012).

As with Section 2.3, we will assume a factored representation is provided, such that

the state space S can be specified by a set of propositional fluents F . Additionally, we

assume the set of goal states G can be concisely described by a subset of propositions

G. For example, if we are considering a travel planning task, G might just include the

proposition onboard plane and the corresponding goal state set G consists of all states

where the fluent onboard plane will be true.

The expected cost of a state is defined here similarly to the standard undiscounted

indefinite horizon SSPs and the Bellman optimality equation is provided as

J(s) = C(s, a) + Σs′∈ST (s, a, s′) ∗ J(s′)

and all goal states are absorbing states.

A partial policy π∗0 is defined to be optimal if there exists no other partial policy

whose expected cost for the initial state is smaller than π∗0 (i.e. Jπ
∗
0 ≤ Jπ for all

proper policies π).

We will consider a setting where the underlying MDPM is known to the explainer

and it is tasked with explaining a given policy π. Note that we don’t assume π to

be optimal, but rather it can be any partial proper policy. To be succinct, in the

rest of the chapter we will use policy in place of partial proper policies and we will

specifically note any exceptions to the case. Before we delve further into the problem,

let us take a quick look at a travel planning domain that will act as our illustrative

example for the rest of the chapter.
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Figure 21.1: The Subfigure (a) Presents Policy Graph Corresponding to Example

Detailed in the Illustrative Domain. Here the Edges with Boxes Represents Actions

with Stochastic Effects and the Goal Is to Board the Plane. Subfigure (B) Presents

One Possible Summarization That Describes a Sequence of Subgoals That Needs to

Achieved under the given Policy.

21.3 Motivating Example: Travel Planning Domain

Consider an intelligent personal assistant that is being used to track and plan

various daily activities of its users. The personal assistant is capable of gathering

information from multiple sources and generating probabilistic models for various

events like weather, vehicle delays, traffic, etc.. Many of these models may be too

complex for the user to easily understand or the information sources too rapidly

changing for the user to keep track off. Now if the user was to ask the agent to come

up with a plan that allows them to get to their flight from their home, the agent could

easily use the models it generated for various sources to create an MDP and compute

a policy that is guaranteed to take the user from their home to the designated flight.

Even in this setting, challenges will arise when the user wants to actually make

sense of the policy suggested by the system. The policy could be extremely large, with
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many branches to handle various contingencies (Figure 21.1 (A) presents a simplified

version of such a policy). The system could hardly expect the user to make sense

of the policy if it merely dumped the entire policy-graph. Given the fact that the

intelligent assistant is almost always available to the user on various devices, the

agent could decide to give the user the policy one step at a time, always coming back

to the user with the next action to perform given where the user is. This approach

could also be extremely unsatisfying as the user would want to know if the policy as

a whole aligns with their preferences; being fed the decisions one at a time, prevents

them from getting an overall idea about the policy.

A more reasonable strategy would involve first presenting the user with a summary

of the policy that highlights some of the important waypoints on the way to the

airport, along with the order in which they should be crossed. Figure 21.1 (B) presents

one possible set of such waypoints and their order in which they are to be achieved.

If the agent were to follow this summarization scheme, the system could report that:

you would first need to get to “the station #1” and then get to “airport shuttle

station”, then get to the “airport”, then to “gate 10” and finally “board the flight”.

Now given these abstract subgoals, the user can the possibly raise contrastive

questions (cf. (Miller, 2017a)) in terms of these subgoals, for example, “What if you

try to avoid the shuttle staion?” or the user could further drill down further to get

more information. In the next sections, we will discuss how for a given model and

policy, we can automatically generate such subgoals and their relative ordering to

summarize the policy.

21.4 Our Approach: TLdR

As hinted in earlier sections, we will use partially ordered landmarks as our sum-

mary. Since we are not aware of any earlier works that have formalized landmarks
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for MDPs, we will start by introducing and formalizing the notion of landmarks in

this setting. With the basic notions of landmarks in place, we can define policy land-

marks and establish some basic properties. To generate these policy landmarks, we

will propose compilation based methods with soundness and completeness guarantees.

21.4.1 Landmarks in MDPs

In the simplest terms, a landmark can be understood as formulas over proposi-

tional fluents that need to be satisfied by all paths from the initial state to goal states.

More formally we can define landmarks as as

Definition 48. For a given modelM whose state space is defined over a set of factors

F , let’s define a tuple L = 〈Φ,≺〉, where Φ is a set of formulas specified over F and

≺ defines some ordering over them. Now L is said to be a landmark set for M, if

all transition sequences from start state to goal state of non-zero probability in M

satisfy the formulas in Φ and their relative ordering, i.e.,

Let τ = 〈s0, a0, ....., sg〉 be a transition sequence from s0 to sg ∈ G, if L specifies

landmarks for M then for all ϕ ∈ Φ there exists sj ∈ τ such that sj |= ϕ and for all

other formulas ϕ1, ϕ2 in Φ such that ϕ1 ≺ ϕ and ϕ ≺ ϕ2 there must exist si, sk ∈ τ

(i < j < k) such that si |= ϕ1 and sk |= ϕ2.

So when identifying landmarks, we expect not only to identify a single formula,

but rather a partially ordered set of formulas. For example the set

{(at airport) ∧ (has ticket), (onboard plane)}

along with the ordering

(at airport) ∧ (has ticket) ≺ (onboard plane)

would constitute landmarks for the aforementioned travel task. This definition of

landmarks parallels their usage in classical planning literature (cf. (Hoffmann et al.,
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2004)) where they have been identified as an extremely useful information for guiding

the planner during plan generation. Throughout the text we will use ‘landmark’ in

singular to denote individual formulas while we will reserve the use of ‘landmarks’ to

denote the partially ordered set of formulas.

While such landmarks on their own could still act as useful subgoals for pol-

icy summarization, they may be too few and far between and may not capture the

specifics of the policy being pursued (unless the user choose to focus on specific in-

termediate states). Instead, we will consider landmarks that are specific to the policy

at hand, which would lead us to define policy landmarks

Definition 49. For a given model M, fluent set F and a policy π, a tuple Lπs0,G =

〈Φ,≺〉 is a policy landmarks from s0 to the goal set G if and only if, the formulas in Φ

and their corresponding ordering can be satisfied by every execution trace τ ∼ π(s0)

from s0 to G.

Note that while any landmarks for the model as a whole will also be a policy

landmark, but the reverse is not true. For example, in the travel scenario in taxi

might be a landmark for some policy but may not be a landmark for the task as a

whole since it may be possible to get to the flight without ever boarding a taxi. We

include the initial state and goal state set in the definition to allow for the possibility

of recursively generating landmarks from any two reachable states for the given policy.

Landmarks as defined above are quite expressive and extensible. By leveraging

disjunctive formulas we can even generate subgoals in cases where there are no state

facts that are shared by all the paths. For example, in the case of the travel domain

described in Figure 21.1 at shuttle north gate ∨ at shuttle north gate is a landmark. In

fact, we can show that there exists a landmark set that can capture the entirety of

any given policy.
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Proposition 43. For a given model M, fluent set F and a policy π, there exists a

policy landmark Lπs0,G = 〈Φ,≺〉 such that for every reachable state s from s0 under

π, there exists a non-trivial formula φ ∈ Φ such that s |= φ.

Proof Sketch. We will show that the property is true by constructing such a landmark

set. Let’s start with the policy graph corresponding to the given policy and partition

the states in the graph to levels based on number of hops from the initial state (in

case of policies with loops we assign each state the level corresponding to the shortest

number of steps in which it can be reached by an execution of the policy). Now we will

generate a DNF formula φ for each level, such that formula for level l contains a clause

corresponding to each state reachable within l steps. Now we can create landmarks

by ordering these DNF formulas according to the levels (and limit ordering to �

starting from the level where the first goal state is reached). Such a landmark set

should satisfy the requirements based on their construction.

The above property merely demonstrates the extensibility of landmarks as a con-

cept and is not an endorsement for using more complex landmark formulas for gen-

erating summaries. In fact, in this chapter we will focus on fact landmarks, where

each formula corresponding to a landmark consists of a single proposition. So when

viewing these landmarks as subgoals, they can be thought of as achieving the fact

corresponding to that proposition.

Now that we have defined partially ordered landmarks for a policy, our next step

would be to identify methods that allow us to generate such landmarks.

21.4.2 Generating Landmarks

Our proposed algorithm for generating landmarks would rely on compilation into

a corresponding classical planning problem, so we will start with a quick definition of
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classical planning problem (Geffner and Bonet, 2013b). Classical planning problems

are generally describe by a tuple of the formMc = 〈F c, Ac, Ic,Gc〉, where F c provides

the set of propositional fluents, Ac the list of deterministic actions, I the initial state

and Gc is the goal specification (similar to how we defined G for the MDP). Each

action a is defined by a tuple 〈pre+(a), pre−(a), add (a), del (a)〉, where pre+(a) and

pre−(a) respectively provides the set of facts that must be true and false for the

applicability of actions, add (a) specifies the fluents it will set true on execution and

del (a) specifies the fluents that it will set false. For our purposes we will assume all

the individual components of the action definition can be represented as sets.

It is well known that one way we can approximate MDPs is to determinize the

MDP to an equivalent classical planning problem (Yoon et al., 2007). One of the

popular forms of determinization is what’s called an all outcome determinization

(Yoon et al., 2007) where for every possible effect of the original MDP action, the

classical planning problem would include a separate action with that specific effect,

i.e. if for a given state s executing an action a could either result in s1 or in s2, then the

determinization should produce two actions, one which will result in s1 and another

action that result in s2. Such determinization procedures become simpler when the

original MDP is specified in a factored form such as PPDDL (Younes and Littman,

2004). While a naive all outcome determinization could result in an exponential

sized planning model, we can get more concise models by relying on more expressive

representations (cf. (Keller and Eyerich, 2011)). As we will see in our particular

setting if we relax the need for generating all landmarks we can still rely on simple

models.

Now given such an all outcome determinization of our MDP M we can see that

planning landmarks in the determinized model should be valid landmarks for M.

This property holds since landmarks for classical planning models are defined over all

414



possible plans and plans in the determinized model have a one to one correspondence

with traces in the original model. Unfortunately, we aren’t interested in just gener-

ating landmarks for the model as a whole, but rather for the specific policy. One way

to get there would be to restrict the model only to produce plans that correspond to

traces we can sample from the given policy. We can create a compiled version of the

classical planning problem which meets the above requirement if the policy is speci-

fied as a finite state machine (see Sreedharan et al. (2019b) or Baier et al. (2007) for

possible compilation). More often than not, many of the popular offline planners for

MDPs generate policies in tabular form, i.e., they explicitly enumerate the reachable

states and their corresponding actions. So in this chapter we will focus on cases where

the policy is provided in this form. Instead of relying on a compilation of policies to

FSAs and then to planning problem, we will develop a method to create a compiled

classical planning problems from the given policy, such that, the landmarks for that

model aligns with policy landmarks of the given tabular policy.

Specifically, given our original MDPM and a policy π with a reachable state set

R(s0, π) let’s consider the following classical planning model, D(M) = 〈F,AD, ID,G〉.

Here the new classical planning model makes use of the same fluent set, initial state

(ID = s0) and goal as the MDP M. The new model contains one action as for each

reachable state s, such that the precondition of the action is pre+(as) = s (assuming

set representation for the state), the negative preconditions and delete effects is empty

(i.e pre−(as) = del (as) = {}), and finally the add effect is the set of all new fluents

that can be set true by the corresponding policy action, i.e.,

add (as) = (
⋃

s′∈{s′|s∈S∧T (s,π(s),s′)>0}

s′) \ s

The above model is polynomial in the size of the given policy even for factored

model representation, and the reason why we do not need to worry about delete effects
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is because most established methods for landmark generation in classical planning

rely on approximations that ignore deletes. We will restrict ourselves to landmark

generation methods that focus on generating causal landmarks (Zhu and Givan, 2003),

where causal landmarks are defined to be facts that are required as preconditions for

every possible plan. All that remains to be shown is that the causal landmarks derived

from this model are sound policy landmarks for original model.

Theorem 14. If f is a causal fact landmark extracted from D(M) then f must be a

policy landmark for M, π, initial state s0 and goal set G. Also for another landmark

f2 (also causal in D(M)), if the precedence f ≺ f2 holds for D(M) then it must also

hold for the original MDP policy.

Proof Sketch. We will basically establish this fact by showing that for every trace

possible in the policy there must be a corresponding trace in D(M) (it may contain

more). This means that causal landmarks for D(M) must satisfy all traces possible

in the original policy. We will prove this through contradiction. First off, it is easy

to see that for any trace τ ∼ π, where τ is of the form 〈s0, a0, ...., sk〉, there exists

a corresponding executable plan trace in D(M), π̂ = 〈s0, a
s0
0 , ...., ŝk〉. Since for any

prefix of the trace, the result of executing the actions in the sequence in D(M) must

be a superset of the resulting state in the trace, i.e., 〈a0, ...ak〉(s0) = ŝk ⊇ sk. This

means the action askk in D(M) whose precondition was sk must now be executable

in ŝk. This is because D(M) is a delete relaxed model and any fact established by

any action in the original trace is conserved through the plan in D(M). If the causal

landmark f in D(M) was not a policy landmark for the original MDP, then there

must exist at least a trace from s0 to some state in G we can sample from π where

f never appears in any of the states. This means that in the corresponding valid

plan for D(M) (where it goes from I to some state that satisfy G), f can’t appear
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in the precondition of any of the actions which contradicts the definition of causal

landmark. Thereby proving our initial assertion. The soundness of ordering can be

established following a similar line of reasoning.

Another interesting property with this setting is the fact that we can exhaus-

tively generate all policy landmarks from delete relaxation of the determinized model.

Though this requires us to move away from the relatively concise representation used

for D(M) to a more traditional all outcome determinization where we have a separate

action for each possible transition in M. That is, for a reachable state s, we add an

action as,s
′

for every s′ such that T (s, π(s), s′) > 0, where the action is defined as

as,s
′
= 〈pre+(as,s

′
) = s, pre−(as,s

′
) = F \ s, add (as,s

′
) = s′ \ s, del (as,s

′
) = s \ s′〉

We will call this encoding D(M)c

Theorem 15. If f is a policy landmark for M, policy π, initial state s0 and goal set

G then f must be a causal fact landmark for D(M)c.

Proof Sketch. We can again show this through contradiction. Since D(M)c is a stan-

dard all outcome determinization there should be a one to one correspondence between

all possible traces from π and plans in D(M)c. Assume that f is a policy landmark

that is not a causal landmark for D(M)c. This means that there must be a valid

plan for D(M)c, where f won’t appear in any of the preconditions. This means that

there must be a trace from s0 to a state in G that doesn’t result in the generation

of the fact f . This means that f can’t be a policy landmark, hence resulting in a

contradiction. This proves our assertion.

Since we are not as focused on ensuring completeness for our evaluation we will

just use the more concise compilation. While our formulation was based on proper

policies to simplify formulation, the methods proposed in this chapter do not require
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the policy itself to be proper. In fact, all we require is that there exists at least one

possible trace from initial state to goal to generate the possible landmarks.

21.5 Formal Semantics for Hierarchies Generated Using TLdR

While in the earlier sections we alluded to the fact that the landmarks can be

viewed as providing a form of temporal abstraction, we have yet to discuss specifics

of the abstraction hierarchy induced by the landmarks. One way to understand the

abstraction induced is to map it to a MaxQ hierarchy and a related hierarchical policy

(Dietterich, 1998) (we consider a slightly modified version to allow application to SSP

as opposed to just an infinite horizon discounted MDPs).

MaxQ is a particular method for specifying temporal abstractions for MDPs that

involve specifying a task hierarchy for the given MDP. Usual MaxQ task hierarchies

start with a root task and each task is recursively composed of subtasks. While

the general MaxQ framework allows for parameterized tasks, we will just focus on

a non-parameterized version where each subtask can be defined by the tuple 〈T,Ai〉

where T specifies the termination predicate or condition and Ai specifies the set of

subtasks (including primitive actions) that can be performed as part of the execution

of the subtask. Since we do not concern ourselves with learning the policies for

these subtasks, we can easily skip the pseudo reward component that is usually also

included in the subtask definition.

One of the main challenges of mapping landmarks we generate to a MaxQ task

hierarchy is the fact that they may be partially ordered. So let us start from a par-

tially ordered set of landmarks L = 〈Φ,≺〉 (where partial ordering are not reflecting

conjunctive landmarks) and construct a totally ordered set Ltot = 〈Φtot,≺〉 such that

Φtot is the maximal subset of Φ that allows for total ordering and still contains the

goal.
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The root task itself would be a task corresponding to achieving the goal, and we

can add a subtask corresponding to each fact in Φtot to the root task. The termination

condition of each subtask is specified by the landmark formula (which for our case is

just the individual fact), the action set consists of all the individual atomic actions.

Now for each formula dropped (i.e formulas in Φ \ Φtot) we will add a subtask node

to:

1. that are it’s closest remaining successor, i.e., add a subtask to the node corre-

sponding to φ′, such that φ′ ∈ Φtot, φ ≺ φ′ and 6 ∃φ̂ ∈ Φtot and φ ≺ φ̂ ≺ φ′.

2. to any node in Ltot that is not comparable (as per L) with the dropped node.

Addition of these new subtasks follows from the fact that when there are partial

ordering among landmarks, each of their possible linearizations could occur under

different traces. To formally describe this, let’s introduce the concept of a completion

of a landmark. We can define the completions of a landmark φ (denoted as C(φ)) as

the set of states where the formula is satisfied for the first time ,i.e.,

C(φ) = {sk|sk ∈ R(s0, π) ∧ sk |= φ∧ ∃τ ∼ π(s0), sk ∈ τ ∧ ∀sj ∈ τ, (sj |= φ =⇒ k ≤

j)}.

Now given this concept, we will assert

Proposition 44. Let f0, f1, f2 and f3 be landmarks such that f0 ≺ f1, f0 ≺ f2,

f1 ≺ f3 and f2 ≺ f3. If |C(f1)∩C(f2)| > 0 and the ordering is complete, then for any

state sf2 ∈ C(f2) (where sf2 6|= f1), there either exists a states sf0 ∈ C(f0) such that f1

is a landmark for paths from sf0 to sf2 or there exists a completion for f3 such that

f1 is a landmark for paths from the completion of f2 to f3.

The above proposition states that if f1 and f2 are not fact landmark represen-

tations of a larger conjunctive landmark (thus |C(f1) ∩ C(f2)| > 0) and the ordering
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Figure 21.2: (A) Graph (with Arrow Directions Presenting the Ordering) Correspond-

ing to a Partially Ordered Landmark Set and (B) an Equivalent MaxQ Hierarchy.

is complete (i.e partial ordering is not due to missing ordering), then for any state

corresponding to achievement of f2, the landmark f1 needs to be achieved before

reaching the current state or needs to be achieved before the successor subgoal (af-

ter crossing the current state). This proposition trivially follows from the nature

of ordering between landmarks and shows the landmarks excluded from the original

total-ordering can still be used as a subtask to achieving the landmarks listed in Ltot.

For conjunctive landmarks, the dropping of one of the facts shouldn’t result in any

information loss since the completion set of one fact contains all the states where the

other fact is also established. Moreover such partial ordering should disappear once

we start generating conjunctive landmarks.

The landmarks also allow us to convert the current policy into a hierarchical one

that can be executed in the context of MaxQ (we will denote this policy as πL). We

can use the following rules to recursively define the hierarchical policy

1. For root node: The initial state gets mapped to the subtask corresponding to
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Figure 21.3: (A) The Diagram Corresponding to the Policy Landmarks Generated

for the Fifth Exploding Blocksworld Problem Presented as Part of IPC 2006. (B) A

Simple Visualization of the Entire Policy.

the first landmark and all completions of each landmark in Φtot gets mapped to

the next subtask in the ordering. For completeness, we will map the remaining

states to the primitive actions specified in the policy, though those should never

get executed.

2. For other subtasks: If the state corresponds to the completion of the last subtask

and is known to lead to one of the child subtask (as per Proposition 21.5) then

map it to the corresponding child node. For any other state execute action

specified by the current policy for that state.

Proposition 45. The hierarchical cost of the policy πL (Jπ
L

= 〈s0, nil〉) is equal to

the cost of the original Jπ(S)

If we follow the hierarchical policy execution procedure specified by Dietterich

(1998), it should be easy to see that the hierarchical cost is the same as the origi-

nal policy cost, since the hierarchical policy execution would only be executing the

primitive actions specified in the original policy.
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21.6 Evaluation

21.6.1 User Studies

Concerning evaluation, our first priority was to perform an assessment of our

central hypothesis, namely, that landmarks constitute useful subgoals. So one of the

questions, that can be raised is whether people would choose landmarks when they

use subgoals to summarize policies. The specific hypothesis we were interested in

evaluating was

Hypothesis: When presented with a policy for a task with non-deterministic

/ stochastic dynamics, people will choose landmark facts as high-level subgoals over

non-landmark facts (where the landmarks are as defined in earlier sections).

The hypothesis was tested by presenting different planning scenarios to partici-

pants from Amazon Mechanical Turk. Each participant was then asked to choose

from a set of possible facts they believe would be the most appropriate subgoal to

be included as part of a summary. In particular, we used a modified version of the

travel scenario discussed earlier and a logistics planning scenario that dealt with the

problem of delivering a package to a pre-specified location. We used 30 participants

per scenario, and the scenario description included a description of the policy graph

and no details on the actual transition probabilities or the rewards. After reading

the scenario, the participants were provided a list of facts about reachable states

under the given policy. They are then asked to select four facts from the list they

believe can be provided as subgoals as part of a summary of the given policy. The

list consisted of 13 facts in total, six of which were landmarks in the travel domain

questionnaire, and five of them were landmarks for the logistics domain questionnaire.

The users were presented the facts in a randomized order to make sure the results are

counterbalanced. We also filtered the answers from the participants based on their
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answers on some factual questions about the policy. For filtering the response, each

participant was presented two questions and their entire response was filtered out if

they got any of the answers incorrect. We also changed the questions for every 15

participants to make sure the questions didn’t introduce any additional bias in the

participants’ reply. After filtering we were left with 41 participants and 164 subgoal

selections. Out of this 164 selection, 125 were landmark selections, which puts the

number of landmarks selected at 76.2%. While non-landmark facts were selected by

participants, the results show that the majority did in fact choose landmark facts to

summarize the give policy. To test the statistical significance of our result we ran

a paired two tailed t-test with the fact type (landmark or not) as the independent

variable and the number of responses per group as the measure. We were able to es-

tablish that there exists a statistically significant difference between the groups with

a level of significance set at 0.001 (the p-value was 0.0000093 for travel domain and

0.000533 for logistics). A PDF copy of the exact surveys has been included can be

found at http://bit.ly/39cxiV8.

21.6.2 Empirical Evaluation

As for the empirical evaluation, we were interested in understanding whether pol-

icy landmarks provided any advantage over problem landmarks in terms of identifying

more subgoals. Since model landmarks are always a subset of policy landmarks, any

additional facts part of the policy landmark should hopefully capture policy specific

characteristics. Moreover, we were interested in seeing how many fact landmarks

were, in fact, extracted for some prototypical problems. So we selected four standard

PPDDL domains from some earlier probabilistic tracks of IPC competitions (Inter-

national Planning Competition, 2011) and five problem instances per domain (except

triangle tireworld for which we only used four). We used compilation methods dis-
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Domain | Rπ(I) | | Ψπ | | ΨM |

Ex-Blocksworld 104.8 8.8 5.2

Elevator 13.2 7 4

Tireworld 13.6 1.8 0.8

Tri-Tireworld 3973 6.25 0

Figure 21.4: Table Showing the Reachable State Set and Landmark Sizes for Bench-

mark Domains. The Second Column of the Table Presents the Number of Reachable

States, While the Third and Fourth Columns List the Average Number of Policy

and Model Landmarks (Excluding Goals). All Domain and Problem Instances Were

Taken from IPC 2006 and 2008.

cussed in earlier section to prepare the deterministic domain for policy landmark ex-

traction. Table 21.4 presents results from this analysis and presents the average policy

size, the number of non-initial and non-goal causal landmarks extracted (i.e landmark

facts aren’t part of the initial state or the goal state) for the policy and for the model

as a whole. All policies were generated using an LAO? (Hansen and Zilberstein,

2001) implementation and because some of these domains we considered included

dead ends, we didn’t enforce the proper policy requirement during the evaluation.

The landmarks were generated using FastDownward (Helmert, 2006) implementation

of Keyder et al. (2010). For all the domains we considered, we found that policy

landmarks do lead to identifying more fact as compared to model landmarks. In fact,

for triangle tireworld problems there were no non-init, non-goal landmarks, while our

method was able to identify multiple policy landmarks. In all the domains, we see

that the landmark sets does lead to more concise policy summary when compared to

the size of the reachable state set.
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As an illustration of the kind of summaries we can generate from such PPDDL

domain, consider one of the problems from the exploding blocksworld domain. The

domain is quite similar to the deterministic blocks world domain, except that now

putting blocks on top of another or on the table could potentially lead to it exploding.

Once a block explodes you can’t place another block on top of it. The specific instance

we looked at contained, 10 blocks and had a goal consisting of five facts. Figure

21.3 (A) presents the policy landmarks and their ordering for the specific policy we

considered which allowed for 362 reachable states (Figure 21.3 (B)). In addition to

showing the various intermediate facts and the order in which to achieve them, one

interesting fact the landmarks highlight is that it presents the order in which the

policy expects the various goal facts to be achieved (highlighted in green).

21.7 Concluding Remarks

In summary, our work presents a policy summarization technique that tries to

automatically identify subgoals for a given policy by identifying landmark facts. To-

wards this end, we formalized the concept of landmarks for MDPs and proposed the

idea of policy landmarks. We introduced compilation based procedures for extracting

these landmarks and established the relationship between the hierarchy induced by

the landmarks with previously studied methods for reasoning with task hierarchies in

MDPs. Our user studies suggest that in the absence of task details, people do tend

to choose landmarks when asked to select intermediate objectives. Additionally, we

also found that in many of the domains choosing to extract policy landmarks does

provide us with more information.

One point hinted at but not expanded upon in the current chapter is how the

summary could be expanded based on user response. For example, from the given set

of subgoals, the user might want to know how exactly the policy plays out. Interest-
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ingly, we can leverage the exact methods discussed in the chapter to generate these

lower-level subgoals. When the user wants to drill down, they can be asked to choose

from the list of completions for source subgoal. Then we can use the compilation

methods developed in the chapter to generate new landmarks from the new initial

state to the destination subgoal.

One of the issues that we didn’t quite cover in the chapter is the fact that users

may not be interested in all landmarks, but rather ones related to a subset of fluents.

For example, an engineer trying to view the policy of an extra-planetary rover may

be more interested in seeing landmarks related to fuel-levels and engine performance,

rather than ones related to samples collected by the robot. On the other hand, a

geologist may be completely oblivious to the details about the robot’s engines or

batteries. To allow for such differing views, we would need to marry our landmark

extraction methods with methods for state abstraction.

Another point to note is that as the underlying model becomes more deterministic,

it should start introducing more policy landmarks, with the entire policy turning into

a single sequence of states and actions in the extreme case. This would mean that

each state in the sequence would be technically a policy landmark. In cases where the

model is deterministic or nearly deterministic, it may be worth focusing on a subset

of policy landmarks that actually appear in the preconditions of actions. In fact,

Sreedharan et al. (2022b) have investigated the close relationship between such policy

landmarks and causal links. If one were to limit oneself to such policy landmarks,

then the summary being presented here would be equivalent to returning just the

causal links that are part of a given plan/policy.
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Part VI

CURRENT LANDSCAPE OF

XAIP AND FUTURE WORK
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Chapter 22

CATEGORIZATION AND ANALYSIS OF EXISTING WORKS IN XAIP

In this chapter, I will present an overview of the various works done in the context

of XAIP and explainable reinforcement learning (henceforth referred to as XRL). The

works will be primarily discussed with in their relation to the three dimensions of

explanation as laid out in the introductory chapter. The goal of this chapter is not

just to present a snapshot of the field as it exists right now, but also to demonstrate

the ability of these three dimensions to provide insights into the extant literature.

In regards to work coverage, I will strive to be exhaustive in the works related to

explainable planning, but with regards to works from XRL I will focus on discussing

some representative works. We will specifically focus on works that introduce a new

explanation generation method as opposed to systems that leverage existing methods.

22.1 Analyses of Current Works

In this section, I will start by providing a brief introduction to each work that I will

be looking at. In particular, I will focus on the following factors, (a) whether the work

focuses on explanations or plan/policy summarization, (b) whether the explanation

could be understood as an answer to a specific question, (c) whether the explanation

is a preference account or a procedural one and (d) the kind of problem formalisms

expected by the method.

Tables 22.1,22.2 and 22.3, present this overview. Note that I have chosen to clas-

sify methods aimed at determining the features in the current state that led to the

selection of the current action as summarization techniques. Such methods are par-

ticularly popular in the context of reinforcement learning problems where the policy
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itself is a non-interpretable artifact, best represented as a black box function mapping

states to actions. My rationale behind classifying these methods as summarization

techniques is the fact that these methods help the user better understand the current

policy, but aren’t explicitly designed to help the user understand why the current

action is an appropriate action to follow in the current state. It is worth noting that

most of the time these methods directly leverage explanatory techniques for single-

shot decision making settings (particularly for classification) to describe the learned

policies. However, the focus of this thesis has been on explaining the robot or the

agent’s rationale for selecting a particular policy or plan and the works in this cat-

egory fail to meet that requirement. Putting aside such summarization works, we

can see that preference based accounts are the most popular types of explanations.

A lot of current works focus on MDPs (probably given the popularity of RL), and

there are only a few works that consider the problem of generating explanations for

more expressive planning formalism like numeric planning or problems with durative

actions.

22.1.1 Asymmetry in Knowledge

Tables 22.4, 22.5, 22.6, 22.7 and 22.8, present the properties of the works with

respect the first dimension, i.e., the assymetry between the robot and the human

in regards to their knowledge about the task. In particular, we will talk about the

assumptions the works make about human and agent models, and whether the works

try to resolve any asymmetry.

Under assumptions made about human and agent models, I have listed both the

explicit and implicit assumptions made by the works. For those works that make

no explicit assumption about the human model, there are two common categories of

implicit assumptions being made, ones that require the human model to be the same
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Paper Type of In-

formation

Associated Question Process or Preference

Account

Problem Class

(Chakraborti

et al., 2017;

Sreedharan

et al., 2020a)

Explanation Why is this plan optimal? Preference PDDL

(Seegebarth

et al., 2012;

Bercher

et al., 2014)

Explanation Why this action? Preference HTN

(Sreedharan

et al., 2018c)

Explanation Why not this set of plan? Preference PDDL

(Sreedharan

et al., 2019b)

Explanation Why can’t you satisfy this con-

straint or why is this problem

unsolvable?

Preference PDDL

(Eifler et al.,

2020a,b)

Explanation Why this set of objectives not

another set?

Preference Planning for multiple objec-

tives (in particular oversub-

scription planning)

(Göbelbecker

et al., 2010)

Explanation Why is this problem not solv-

able?

Preference PDDL

(Khan et al.,

2009)

Explanation Why did you do action a in

state s?

Preference Discounted infinite horizon

MDP

(Dodson

et al., 2013)

Explanation Why did you do action a in

state s?

Preference Discounted infinite horizon

MDP

(Madumal

et al., 2020b)

Explanation Why action a and not b in state

s?

Preference Discounted infinite horizon

MDP

(Greydanus

et al., 2018;

Anderson

et al., 2019)

Summary Discounted infinite horizon

MDP

(Zahavy

et al., 2016)

Summary Discounted infinite horizon

MDP

(Magnaguagno

et al., 2017)

Explanation PDDL

(Krarup

et al., 2021,

2019)

Explanation Contrastive Query Process PDDL 2.1

(Koul et al.,

2019)

Summary Discounted infinite horizon

MDP

(Kim et al.,

2019)

Summary Sets of traces over proposi-

tional states

Table 22.1: An Overview of the Works That Will Covered in This Discussion (Part

1)
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Paper Type of In-

formation

Associated Question Process or Preference

Account

Problem Class

(Vasileiou

et al., 2021)

Explanation Why is this formula entailed by

the knowledge base?

Preference Propositional knowledge bases

(Lin et al.,

2021)

Explanation Why was action a chosen in

state s instead of b?

Process Discounted infinite horizon

MDP

(Juozapaitis

et al., 2019)

Explanation Why was action a chosen in

state s instead of b?

Preference Discounted infinite horizon

MDP with multiple reward

components

(Madumal

et al., 2020a)

Explanation Why was action a chosen in

state s instead of b?

Preference Discounted infinite horizon

MDP

(Waa et al.,

2018)

Explanation Why this set of actions instead

of others? (a form of partial

foils as applied to MDP)

Preference Discounted infinite horizon

MDP (annotated with action

outcomes)

(Valmeekam

et al., 2020)

Explanation Why not this other strategy

(where strategy specified as a

partial plan)

Preference PDDL

(Sukkerd

et al., 2020)

Explanation why this policy Preference Multi objective MDP (dis-

counted and inifinite horizon)

(Lage et al.,

2019; Amir

and Amir,

2018)

Summary Discounted infinite horizon

MDP

(Kasenberg

et al., 2020)

Explanation Why was the formula φ satis-

fied? (φ being a temporal logic

formula)

Preference Deterministic discounted infi-

nite horizon MDP with a set

of preferences expressed as LTL

formulas with a lexicographic

ordering

(Ferrer-

Mestres

et al., 2020)

Summary Discounted infinite horizon

MDP

Table 22.2: An Overview of the Works That Will Covered in This Discussion (Part

2)

as the agent model (for example those related to excuse generation (Göbelbecker

et al., 2010)), versus one that might work if the user’s model is empty, as in they

have no prior knowledge about the domain. There are a few ways this setting could

be grounded, one would be to assume optimism under ignorance, in that humans

think goals are reachable from all states and all transitions have minimal costs. In

the context of PDDL (assuming only positive goals) this translates into a model with

empty preconditions and an effect set that is equivalent to the fluent set. In the
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Paper Type of In-

formation

Associated Question Process or Preference

Account

Problem Class

(Sreedharan

et al., 2018a)

Explanation Why is the plan π optimal? Preference PDDL

(Sreedharan

et al., 2022c)

Explanation Why plan π and not plan π′? Preference A deterministic planning prob-

lem expressible as a PDDL

model over some set of fluents

(Hayes and

Shah, 2017)

Summary Discounted infinited horizon

MDP

(Sreedharan

et al., 2020c)

Summary SSP

(Topin and

Veloso, 2019)

Summary Discounted infinited horizon

MDP

(Brandao

et al., 2021)

Explanation Why is path p1 optimal rather

than p2?

Preference NavMesh Path Planning Prob-

lems

(Olson et al.,

2019)

Summary MDP (where states can be vi-

sually represented)

(Huber and

André, 2019)

Summary MDP (where states can be vi-

sually represented)

(Coppens

et al., 2019)

Summary MDP (where states can be vi-

sually represented)

(Soni et al.,

2021)

Explanation Why is this behavior part of an

optimal policy?

Preference MDP

(Kumar

et al., 2021)

Explanation Why is this plan optimal? Preference PDDL

(Vasileiou

et al., 2022)

Explanation Why is this formula entailed by

the knowledge base?

Preference Propositional knowledge bases

and SMT (supports PDDL+)

(Sreedharan

et al., 2019a)

Why is this behavior part of an

optimal policy?

Preference MDP

Table 22.3: An Overview of the Works Continued from Table (Part 3)

context of MDPs, I have taken this to mean, actions have an equal likelihood of

taking you to any state, and all transition costs are minimal. Additionally, I assume

the human would accept all the information provided by the system (for example

they may accept information about the ). Many explanation schemes where the

explanation provides information about execution traces of the current strategy or

alternate ones specified by the human would still be valid in these settings. This

includes works like the one presented by Waa et al. (2018) or the ones that use

learned causal models to contrast the outcomes of the current action with another

(cf. (Madumal et al., 2020b)). A more interesting group of works that I would
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argue can support this category are the ones like the method presented by Eifler

et al. (2020a), where the explanation provides the various constraints between the

different possible objectives. In a way, we could see these works as performing a kind

of model simplification, where they effectively convert a multi-objective planning

problem into a constraint satisfaction problem where there are specified constraints

among various objectives. If the human is ready to accept that such constraints exist,

and do not ask why such constraints may exist then the generated explanations should

completely satisfy the human. This is in contrast with works like the ones presented

by Göbelbecker et al. (2010), that could fail if the human model is not the same as

the agent model.

For summarization works, I have mostly left the assumptions related to human

models blank, since most of those works do not directly use the human’s mental

models to create summaries. The exception being works like Lage et al. (2019); Amir

and Amir (2018), which expects the human to reconstruct the rest of the policy given

a few state action samples. Depending on the work, they either assume the human’s

model is the same as the agent or the agent has access to some representation of the

human’s beliefs about the task.

In regards to addressing this model mismatch, I have listed two possible category

works. The first corresponds to methods that try to directly engage in model rec-

onciliation as part of addressing the explanatory queries, and methods that expose

model information as part of explanation even though they may not have explicitly

assumed a model difference. The latter was a hard category to narrow down since

many works indirectly expose model information through explanatory witnesses like

possible constraints between various objectives, value functions, and plan traces, etc.

Here I have only included works that are directly providing model information to the

human.
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Paper

Assumptions regarding models Model Mismatch

Explicit Implicit Sufficiently reconciles Exposes Model Information

(Chakraborti

et al., 2017;

Sreedharan

et al., 2020a)

Human

model known

and could

be differ-

ent along

multiple

dimensions

No additional as-

sumptions identi-

fied

Yes Yes

(Seegebarth

et al., 2012;

Bercher

et al., 2014)

None men-

tioned

Is guaranteed to

work if the model

of the human is

empty, or doesn’t

have any deletes.

Not in the general

case

Yes (preconditions and ef-

fects)

(Sreedharan

et al., 2018c)

Human

model is

expected

to be an

abstraction

of the true

robot model

Will be able to

resolve the foil

even if the as-

sumption is not

met, provided the

lattice considered

is complete and

defined over all

propositions and

the model is dis-

junction free

Yes Yes

(Sreedharan

et al., 2019b)

Human

model is

expected

to be an

abstraction

of the true

robot model

Will be able to

resolve the foil

even if the as-

sumption is not

met, provided the

lattice considered

is complete and

defined over all

propositions and

the model is dis-

junction free

Yes Yes

Table 22.4: Assumptions Made by the Works in Regards to Dimension One and

Whether the Works Can Address the Asymmetry (Part 1)

434



Paper

Assumptions regarding models Model Mismatch

Explicit Implicit Sufficiently reconciles Exposes Model Information

(Eifler et al.,

2020a,b)

None men-

tioned

Will work if the

human model is

empty, provided

the human don’t

ask why the

plan property

entailments holds

Not in the general

case

No – though it could be

argued that the global ex-

planation they provide is

a simplified representation

of the problem

(Göbelbecker

et al., 2010)

None men-

tioned

Has to be the

same model

No By the virtue of provid-

ing a counterfactual value

of a static proposition, it

exposes some initial state

values

(Khan et al.,

2009)

None men-

tioned

Has to be the

same model

No No – though the explana-

tion here consists of reach-

ability

(Dodson

et al., 2013)

None men-

tioned

Will work if the

human model is

the same

No No

(Madumal

et al., 2020b)

None men-

tioned

Will work if the

human model is

empty

No The explanation here con-

sists of providing a causal

chain which includes in-

formation about the tran-

sition and even informa-

tion about reward func-

tion/goal is provided at a

high level

(Greydanus

et al., 2018;

Anderson

et al., 2019)

None men-

tioned

N/A No No

(Zahavy

et al., 2016)

None men-

tioned

N/A No As part of the abstracted

representation of the pol-

icy they also reveal the

transitions

(Magnaguagno

et al., 2017)

None men-

tioned

Will work if the

human model is

empty

Yes (visualizing the

entire search tree)

Yes

(Krarup

et al., 2021,

2019)

The jour-

nal version

mentions

they make

no explicit

assumptions

Same model/-

Constrained

model

No No

Table 22.5: Assumptions Made by the Works in Regards to Dimension One and

Whether the Works Can Address the Asymmetry (Part 2)
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Paper

Assumptions regarding models Model Mismatch

Explicit Implicit Sufficiently reconciles Exposes Model Information

(Koul et al.,

2019)

None men-

tioned

N/A No No

(Kim et al.,

2019)

None men-

tioned

N/A No No

(Vasileiou

et al., 2021)

Human

model is

given and

could differ

from the

robot model

in multiple

ways

None identified Yes Yes

(Lin et al.,

2021)

None men-

tioned

MSX requires the

model to be the

same or the hu-

man to be pes-

simistic

No No

(Juozapaitis

et al., 2019)

None men-

tioned

MSX requires the

model to be the

same or the hu-

man to be pes-

simistic

No No

(Madumal

et al., 2020a)

None men-

tioned

Will work if the

human model is

empty

No Yes - The explanation here

consists of providing a

causal chain and distal ac-

tion. So it does reveal in-

formation about transition

and even preconditions of

actions

(Waa et al.,

2018)

None men-

tioned

Will work if the

human model is

empty

No The explanation involves

traces and positive and

negative outcomes of ac-

tions

(Valmeekam

et al., 2020)

Human

model ex-

pected to be

given

N/A Yes Yes

(Sukkerd

et al., 2020)

None men-

tioned

Will work if the

human model is

empty

No No – but one could ar-

gue since by presenting the

tradeoff between the vari-

ous metrics they are in fact

presenting the model infor-

mation at an abstract level

Table 22.6: Assumptions Made by the Works in Regards to Dimension One and

Whether the Works Can Address the Asymmetry (Part 3)
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Paper

Assumptions regarding models Model Mismatch

Explicit Implicit Sufficiently reconciles Exposes Model Information

(Lage et al.,

2019; Amir

and Amir,

2018)

None men-

tioned

Requires

knowledge

about human

model

No No

(Kasenberg

et al., 2020)

None men-

tioned

Will work if

the human

model is

empty

No No – But part of the explana-

tion would present relationship

between achieving φ and other

LTL preferences

(Ferrer-

Mestres

et al., 2020)

None men-

tioned

Will work if

the human

model is

empty

Not specified, but one could

theoretically convey the ab-

stract model generated

Not specified

(Sreedharan

et al., 2018a)

A partial

specification

of human

model pro-

vided

Will theoret-

ically work

if the human

model is

completely

unknown,

provided

they share

the same

action and

fluent set

Yes Yes

(Sreedharan

et al., 2022c)

Human

model is

empty

Will be able

to resolve

the foil even

if the as-

sumption

is not met,

provided the

precondition

for the fail-

ing action in

the human

model is

disjunction

free

Yes Yes

(Hayes and

Shah, 2017)

None men-

tioned

N/A No No

Table 22.7: Assumptions Made by the Works in Regards to Dimension One and

Whether the Works Can Address the Asymmetry (Part 4)
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Paper

Assumptions regarding models Model Mismatch

Explicit Implicit Sufficiently reconciles Exposes Model Information

(Sreedharan

et al., 2020c)

None men-

tioned

N/A No No

(Topin and

Veloso, 2019)

None men-

tioned

N/A No No (They do expose some infor-

mation about transition proba-

bilities at an abstract level)

(Brandao

et al., 2021)

Human

model known

No ad-

ditional

assumptions

identified

Yes Yes

(Olson et al.,

2019)

None men-

tioned

N/A No No

(Huber and

André, 2019)

None men-

tioned

N/A No No

(Coppens

et al., 2019)

None men-

tioned

N/A No No

(Soni et al.,

2021)

Human

model be-

longs to one

of a set of

finite types.

Specific

models of

each type

not known

No ad-

ditional

assumptions

identified

Yes Yes

(Kumar

et al., 2021)

Human

Model given

No ad-

ditional

assumptions

identified

Yes Yes

(Vasileiou

et al., 2022)

Human

Model given

No ad-

ditional

assumptions

identified

Yes Yes

(Sreedharan

et al., 2019a)

Human

model is

not known,

but can in-

teract with

people with

the same

background

knowlede

No ad-

ditional

assumptions

identified

Yes Yes

Table 22.8: Assumptions Made by the Works in Regards to Dimension One and

Whether the Works Can Address the Asymmetry (Part 5)
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22.1.2 Asymmetry in Inferential Capabilities

Table 22.9 and 22.10 focuses on aspects related to addressing inferential mismatch.

Since Table 12.3 and 12.4 in Chapter 12 provides a comprehensive list of explanatory

witnesses used in previous works, I have skipped them in this table. The focus on this

table would be on whether the works use model simplification strategies and as evident

from the table the vast majority of current works do. In this section, I would like to

specifically highlight two sets of works. First being the method presented by Lage

et al. (2019), which to the best of my knowledge is the only work that incorporates an

explicit model of the inferential process used by the user. While the method doesn’t

use model simplification, it uses the human’s inferential model to figure out the set

of examples to show. The method expects the human to employ their inferential

algorithm to reconstruct the rest of the policy from the specified examples. Secondly,

consider the works presented by Sreedharan et al. (2019a) and Soni et al. (2021).

While these works don’t explicitly try to address inferential difference, they can in

theory account for it. This is because the labeling models are directly learned from the

data collected from humans and thus the label would be negative if the explanation

places too much inferential burden on the human. Finally, the explanatory messages

used by these methods could also be derived from a simplified version of the model.

22.1.3 Asymmetry in Vocabulary

Finally Tables 22.11 and 22.12 discusses how the methods relate to the third

dimension. As evident from the table, there are very few works that explicitly bring

up the possibility of vocabulary mismatch. However, there are quite a few works

that can operate succesfully in the presence of such asymmetry. A prominent group

of such works are the ones that use various visualization methods. In these cases,
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Paper

Inferential Mismatch

Does it try to account for it? Performs Model Simplification

(Chakraborti

et al., 2017;

Sreedharan et al.,

2020a)

No No

(Seegebarth

et al., 2012;

Bercher et al.,

2014)

Yes No

(Sreedharan

et al., 2018c)

Yes Yes (Abstraction)

(Sreedharan

et al., 2019b)

Yes Yes (Abstraction)

(Eifler et al.,

2020a,b)

Yes Yes (Only presents the con-

straints among the different ob-

jectives)

(Göbelbecker

et al., 2010)

Yes No

(Khan et al.,

2009)

Yes Yes(A form of state abstrac-

tion, particularly the ones that

use factored subsets)

(Dodson et al.,

2013)

Yes No

(Madumal et al.,

2020b)

Yes Yes (Instead of presenting tran-

sition over entire state they

present effect of each action

specific state factors)

(Greydanus et al.,

2018; Anderson

et al., 2019)

Yes No

(Zahavy et al.,

2016)

Yes Yes (Provide SAMDP which

uses both temporal and state

abstraction)

(Magnaguagno

et al., 2017)

Yes No

(Krarup et al.,

2021, 2019)

Yes No

(Koul et al., 2019) Yes Yes

(Kim et al., 2019) Yes No

(Vasileiou et al.,

2021)

No No

(Lin et al., 2021) Yes Yes

(Juozapaitis

et al., 2019)

Yes No

Table 22.9: A Summary of Whether the Different Methods Contribute to Addressing

Inferential Differences Between the Robot and the Human. (Part 1)
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Paper

Inferential Mismatch

Does it try to account for it? Performs Model Simplification

(Madumal et al.,

2020a)

Yes Yes (Instead of presenting tran-

sition over entire state they

present effect of each action

specific state factors)

(Waa et al., 2018) Yes Maps the reward function into

positive and negative outcomes

(Valmeekam

et al., 2020)

Yes No

(Sukkerd et al.,

2020)

Yes Yes

(Lage et al., 2019;

Amir and Amir,

2018)

Yes No

(Kasenberg et al.,

2020)

Yes Yes

(Ferrer-Mestres

et al., 2020)

Yes Yes

(Sreedharan

et al., 2018a)

No No

(Sreedharan

et al., 2022c)

No No

(Hayes and Shah,

2017)

Yes No

(Sreedharan

et al., 2020c)

Yes Yes

(Topin and

Veloso, 2019)

Yes Yes

(Brandao et al.,

2021)

No No

(Olson et al.,

2019)

Yes No

(Huber and

André, 2019)

Yes No

(Coppens et al.,

2019)

Yes No

(Soni et al., 2021) Can support it Can support it

(Kumar et al.,

2021)

No No

(Vasileiou et al.,

2022)

No No

(Sreedharan

et al., 2019a)

Can support it Can support it

Table 22.10: A Summary of Whether the Different Methods Contribute to Addressing

Inferential Differences Between the Robot and the Human. (Part 2)
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regardless of how the human may reason about the task, they would still be able to

make sense of the information. Another group of works that still can operate correctly

are the summarization works that rely on providing the users with various behavioral

demonstration (cf. (Lage et al., 2019; Amir and Amir, 2018)). Finally, there are

works that can support the use of features that are not necessarily the same as the

ones used in the original decision-making process (Madumal et al., 2020b,a).

22.2 Other Considerations for XAIP

While the focus of this chapter has been to characterize the works using the

three dimensions of human-aware explanations highlighted in this thesis, it would be

instructive to take a quick look at some of the other salient features that could be

used to characterize the works.

End Users of the Explanations One question we haven’t quite discussed in this

thesis is, who is meant to use the explanation. In the planning setting, one could

imagine three broad user classes

- End user: This is the person who interacts with the system in the form of a

user. For a planning system, this may be the human teammate in a human-robot

team (Chakraborti et al., 2019f) who is impacted by or is a direct stakeholder

in the plans of the robot, or a user collaborating with an automated planner in

a decision support setting (Grover et al., 2020a).

- Domain Designer: This is the person involved in the acquisition of the model

that the system works with: e.g. the designer of goal-oriented conversation

systems (Sreedharan et al., 2020b).
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Paper

Vocabulary Mismatch

Does it explicitly try to ac-

count for it?

Is the method applicable under

vocabulary mismatch?

(Chakraborti

et al., 2017;

Sreedharan et al.,

2020a)

No No

(Seegebarth

et al., 2012;

Bercher et al.,

2014)

No No

(Sreedharan

et al., 2018c)

No No

(Sreedharan

et al., 2019b)

No No

(Eifler et al.,

2020a,b)

No No

(Göbelbecker

et al., 2010)

No No

(Khan et al.,

2009)

No No

(Dodson et al.,

2013)

No No

(Madumal et al.,

2020b)

No Yes

(Greydanus et al.,

2018; Anderson

et al., 2019)

No Yes

(Zahavy et al.,

2016)

No Yes

(Magnaguagno

et al., 2017)

No No

(Krarup et al.,

2021, 2019)

No No

(Koul et al., 2019) No Yes

(Kim et al., 2019) No No

(Vasileiou et al.,

2021)

No No

(Lin et al., 2021) No No

(Juozapaitis

et al., 2019)

No No

Table 22.11: The Table Summarizes How the Different Methods Relate to the Third

Dimension, I.E., Asymmetry in Vocabulary (Part 1)
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Paper

Vocabulary Mismatch

Does it explicitly try to ac-

count for it?

Is the method applicable under

vocabulary mismatch?

(Madumal et al.,

2020a)

No Yes

(Waa et al., 2018) Yes Yes

(Valmeekam

et al., 2020)

No No

(Sukkerd et al.,

2020)

No No

(Lage et al., 2019;

Amir and Amir,

2018)

No Yes

(Kasenberg et al.,

2020)

No No

(Ferrer-Mestres

et al., 2020)

No No

(Sreedharan

et al., 2018a)

No No

(Sreedharan

et al., 2022c)

Yes Yes

(Hayes and Shah,

2017)

Yes Yes

(Sreedharan

et al., 2020c)

No No

(Topin and

Veloso, 2019)

No No

(Brandao et al.,

2021)

No No

(Olson et al.,

2019)

No Yes

(Huber and

André, 2019)

No Yes

(Coppens et al.,

2019)

No Yes

(Soni et al., 2021) No Yes

(Kumar et al.,

2021)

No Yes

(Vasileiou et al.,

2022)

No No

(Sreedharan

et al., 2019a)

Yes Yes

Table 22.12: The Table Summarizes How the Different Methods Relate to the Third

Dimension, I.E., Asymmetry in Vocabulary (Part 2)
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- Algorithm Designer: The final persona is that of the developer of the algorithms

themselves: e.g. in the context of automated planning systems, this could be

someone working on informed search.

A vast majority of explanation work in XAIP tends to be designed from the end-user

perspective (characterized by the popularity of the preference account explanations).

Though there exists works (Sreedharan et al., 2020b; Lin and Bercher, 2021) designed

for the domain designer and works (Magnaguagno et al., 2017) better suited for the

algorithm designer.

Local versus Global Explanations. Another consideration is whether an expla-

nation is geared towards a particular decision (local), e.g. LIME (Ribeiro et al.,

2016), or for the entire model (global), e.g. TCAV (Kim et al., 2018) – for a planning

problem this distinction can manifest in many ways: whether the explanation is for a

given plan versus if it is for the model in general. From this perspective, most works

in XAIP may be best understood as local explanations. However, some examples of

global explanation include works like those presented by Sreedharan et al. (2019b);

Göbelbecker et al. (2010).

Other Forms of Explanations Another thread of explanation generation work

that doesn’t quite fit into the groups described here is the one that focuses on ab-

ductive reasoning, wherein the objective is to identify a hypothesis that best explains

the given set of observations. Some prominent examples of these include the method

presented by Sohrabi et al. (2011a), where they try to identify the most preferred tra-

jectory constraints that best fit the set of observations or the work on explanations

for open-world planning (Hanheide et al., 2017), which tries to identify the specific

assumption (made as part of the planning process) whose failure may best explain
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the unexpected observations. I have chosen not to list them as their use case and

motivation is usually different from the types of explanation listed here where the

system is trying to explain the rationale for choosing certain actions. Thus, making

it harder to put them into a single category. Though I don’t want to imply that they

are independent or orthogonal works, particularly because many works that use the

analysis of black box/inscrutable models to generate explanations could be argued to

be performing similar kinds of reasoning.
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Chapter 23

CONCLUSION

This dissertation looked at the ‘Human-Aware Explanation’ framework that frames

explanation as a process of reconciling the difference between the expectation of the

human and the robot in regards to the most preferred solution. Within this frame-

work, we looked at three salient dimensions of asymmetry between the robot and the

human that need to be addressed by any process hoping to bridge such expectation

mismatch. Specifically, we looked at the dimensions (a) asymmetry in knowledge,

(b) asymmetry in inferential capabilities, and (c) asymmetry in vocabulary. The first

two dimensions are the potential reason for the mismatch in expectation, and the

third dimension controls how effectively the robot can communicate with the human

to resolve the expectation mismatch.

Throughout the first three parts of the dissertation, we have looked at various

explanation generation methods that can address and cope with these three dimen-

sions. In part IV, we looked at specialized planning algorithms that can take into

account the overhead of explaining a given plan when choosing the robot’s behavior.

In part V, we looked at methods for summarizing agent plans or policies. Finally, in

Chapter 22, we used the framework of ‘Human-Aware Explanation’ itself as a lens to

analyze the current landscape of explainable planning works.

23.1 Next Step: Leveraging the Three Dimensions in the Larger Context of

Human-AI Interaction

We have already covered specific next steps for the individual explanation tech-

niques, particularly in the overview chapters. As such, I would like to use this section
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to instead highlight how the use of the dimensions of asymmetry extends beyond

explanation generation. In particular, I would like to make the case that these three

points of asymmetry are important factors that come into play in every interaction

between an automated AI system and a human. One of the dimensions, namely vo-

cabulary mismatch, has recently been getting some attention in regards to its role

in the larger picture of human-AI interaction (cf. (Kim, 2022; Kambhampati et al.,

2022)). However, to create agents that can truly collaborate with humans, we need

to consider all three dimensions simultaneously.

To see the need for considering the other two dimensions, let us look at the problem

of achieving value alignment between the human and the robot (Hadfield-Menell et al.,

2016). Value alignment is widely considered as being central to addressing many of

the existential risks posed by superhuman AI. Even if we were to discount such risks,

it is easy to see that we would want to work with AI systems that align with our

values and works to maximize our inherent rewards. One of the oft-cited challenges to

achieving such alignment is the fact that humans are not good at specifying underlying

objectives. Sometimes referred to as the Midas problem, it points out how simple

misspecification of rewards provided to a powerful optimizer could lead to unforeseen

outcomes. However, once we apply the lens of human-aware AI, it is easy to see that

the root cause of such misalignment still lies within the three dimensions we have

seen so often in this dissertation.

Figure 23.1 visualizes the scenario where a human is trying to provide some advice

or instructions to a robot. Here we see a human with a previously unspecified prefer-

ence on the robot’s behavior. This could be the result of some human-specific reward

function or some underlying objective that they hope the robot would maximize or

achieve as part of its operation. Based on their current belief about the robot model

(MR
h ), the human identifies some model updates whose inclusion in the robot model,
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they hope, will result in the desired behavior. Among many others, the update could

take the form of some change to the robot’s objective or some constraint placed on

the robot’s behavior. This update depends on both the human’s current knowledge

about the model and their inferential ability. The latter is due to the fact that the

human relies on their inferential ability to verify that the updated model will result

in the desired behavior. As we have seen through the chapters, humans could be off

in both dimensions and thus blindly following human instructions could lead to not

just suboptimal behaviors but ones that may be detrimental to the actual human

objective.

Figure 23.1: A mental-model centric visualization of the case where the human is

trying to come up with instructions or advice that will be provided to the robot.

To concretize this setting, consider a scenario consisting of a robot, working with

a human commander to find and rescue survivors from a collapsed building. Let us

assume that at some point, the commander who is supervising and guiding the robot

asks it to clear the north hallway of the building. The human’s true objective is to

look for potential victims in a specific room and may be under the incorrect belief

that the north hallway is the shortest route to the room. However, unbeknownst to
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the human the robot has easier ways of getting in the room and following the human

instruction exactly would result in the team wasting valuable time.

By the robot being cognizant of these asymmetries and having models of the

human’s actions and goals – thus mirroring and inverting the modeling we discussed in

Chapter 1, the robot can infer the underlying intention behind the human instructions

and offer alternate suggestions that may result in higher team utilities.
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Overview

This appendix contains the following information; (1) the assumptions and the-
oretical results related to the representational choices made by the method, (2) the
pseudo-code for the probabilistic version of the algorithms which were used in the eval-
uation, (3) the derivation of the formulas for confidence calculation (4) the derivation
of the formulas for using a noisy classifier and finally (5) the details on the experiment
that are not included in the main chapter (6) analysis of assumptions made and (7)
extended discussion of various future works and possible limitations of the current
method and (8) screenshots of the various interfaces.

Sufficiency of the Representational Choice

The central representational assumption we are making is that it is possible to
approximate the applicability of actions and cost functions in terms of high-level
concepts. Apart from the intuitive appeal of such models (many of these models have
their origin in models from folk psychology), these representation schemes have been
widely used to model real-world sequential decision-making problems from a variety
of domains and have a clear real-world utility (Benton et al., 2019).

Revisiting the definition of local approximations for a given internal model M =
〈S,A, T, C〉 and a set of states Ŝ ⊆ S, we define a local approximation as

Definition 50. A symbolic model MC
S = 〈C, AC

S ,C(I),C(G), CCS 〉. is said to be a
local symbolic approximation for the problem ΠR = 〈MR, I,G〉 (where MR =

〈S,A, T, C〉) for regions of interest Ŝ ⊆ S if ∀s ∈ Ŝ and ∀a ∈ A, we have an equivalent
action aC ∈ AC

S , such that (a) aC(C(s)) = C(T (s, a)) (assuming C(⊥) = ⊥) and (b)
CCS (C(s), a) = C(s, a) and (c) C(G) =

⋂
sg∈G∩Ŝ C(sg).

We can show that

Proposition 46. If Ŝ and A are finite, there exists a symbolic model

MC
S = 〈C, AC

S ,C(I),C(G), CCS 〉

such that it’s a local symbolic approximation.

We can show this trivially by construction. We introduce a set of concepts whose
size is equal to the number of state in Ŝ (for si ∈ Ŝ, we introduce a concept csi). and
we define a conditional effect and conditional cost function for every viable transition
in for an action a in MR, and the precondition of a becomes a disjunction over the
negation of concepts corresponding to the states where a fails. In Proposition 48,
we will further discuss how these disjunctive precondition turns into new conjunctive
preconditions.

Proposition 47. If πi, π2 are two plans such that π1 � π2 for ΠR, then precedence is
conserved in a symbolic model MC

S that is local approximation that covers all states
appear in πi or π2.
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a Algorithm for Finding Missing Precondition

1: procedure Precondition-search
2: Input : sfail, afail, Sampler,MR,C, `, κ
3: Output : Missing precondition Cprec

4: Procedure:
5: P ← Missing concepts in sfail
6: PP ← Initialize priors
7: sample count = 0
8: while sample count < ` do
9: s ∼ Sampler

10: if T (s, afail) 6= ⊥ then
11: Update PP
12: Eliminate any ci ∈ P , such that PP(ci) < κ

13: if |P| = 0 then return Signal that concept list
is incomplete

14: sample count += 1
return Ci ∈poss prec set, with highest probability

b Algorithm for Finding Cost Function

1: procedure Cost-Function-search

2: Input : πf , Cπ , Sampler,MR,C, `
3: Output : Cπf

4: Procedure:
5: for conc limit in 1 to |C| do
6: current foil cost = 0
7: Prob list = []
8: conc list = []
9: for i in 1 to k (the length of the foil) do

10: Ĉi, min cost, P(Ĉi,ai)≥min cost
=

find min conc set(C(T (s, 〈a1, ...ai−1〉)), ai, conc limit, `)
11: current foil cost += min cost
12: Prob list.push(P(Ĉi,ai)≥min cost

)

13: conc list.push(Ĉi, min cost)

14: if current foil cost > Cπ then return conc list,
Prob list

return Signal that the concept list is incomplete

Figure A.1: The Extension of the Two Algorithms to Use the Confidence Values,
Subfigure (A) Presents the Algorithm for Missing Precondition and (B) the One for
Cost Function

This trivially follows from the fact that per definition of local approximation both
the invalidity of plans and cost of plans are conserved. Which means any preference
over plans that can be established in the complete model can be established in the
approximate model.

Apart from this basic assumption, we make one additional representational as-
sumption, namely, that the precondition can be expressed as a conjunction of positive
concepts. Which brings us to the next proposition

Proposition 48. A precondition of an action precai, which is represented as an
arbitrary logical formula over a set of propositions P can be mapped to a conjunction
over positive literals from a different set P ′ (which can be generated from P ).

To see why this holds, consider a case where the precondition of action a is ex-
pressed as an arbitrary propositional formula, φ(C). In this case, we can express it in
its conjunctive normal form φ′(C). Now each clause in φ′(C) can be treated as a new
compound positive concept. Thus we can cover such arbitrary propositional formu-
las by expanding our concept list with compound concepts (including negations and
disjuncts) whose value is determined from the classifiers for the corresponding atomic
concepts. Note that the set of all possible compound concepts could be precomputed
and add no additional overhead on the human’s end. Also note, this is completely
compatible with relational concepts as relational concepts defined over a finite set of
objects can be compiled into a set of finite propositional concepts. Proposition 48
also extends to cost functions, which we assume to be defined over conjunction of
concepts.
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Explanation Identification with Probabilistic Confidence

Now the objective of the methods become not only identify an explanation but
one that has the likelihood of being true. This means for precondition the objective
becomes. Given the failing state sfail and action afail and a set of states S where afail

is executable, explanation identification for a failing precondition involves finding a
concept ci ∈ C \ C(sfail), such that ci = arg maxc P (c ∈ pafail

|S).
In terms of the algorithm for finding precondition, the main difference is the fact

that instead of eliminating the hypothesis directly from their presence or absence
in the given state, we will instead use the observation to update the posterior over
the hypothesis being true. We can also further improve the efficiency of search by
removing possible hypothesis for final precondition, when its probability dips below
a low threshold κ. Note that when κ = 0 and the observation model is perfect
(P (Os

ci
|ci ∈ s) = 1 and P (Os

ci
|ci 6∈ s) = 0), then the reasoning reflects the elimination

based model learning method used by many of the previous approaches like those
presented by Carbonell and Gil (1990); Stern and Juba (2017).

Now for the cost function, the objective becomes

Definition 51. Given a foil πf = 〈a1, ..., af〉 with m ≤ f unique actions (where A(ai)
returns the unique action label), a set sets of states {S1, ...,Sm} where each SA(ai)

corresponds to a set of states where an action A(ai) is executable, the explanation for
suboptimality correpond to finding an abstract cost function, that tries to minimize
for the cost and maximize the probabilities.

minĈ1,...,Ĉf (
∑
i=1..f

‖Ĉi‖,−1× P (C(Ĉ1, a1) ≥ k1|SA(a1)), ...,−1× P (C(Ĉf , af ) ≥ kf |SA(ak))

subject to Cabss (Cπf , πf ) > C(I, π)

Rather than solve this full multi-objective optimization problem, we will use the
cost as the primary optimization criteria and use probabilities as a secondary one.
Figure A.1(b), present a modified version of the greedy algorithm to find such cost ab-
stractions. The procedure find min conc set, takes the current concept representation
of state i in the foil and searches for the subset Ĉi (and its probabilistic confidence)

of the state with the maximum value for CabsS (Ĉi, ai), where the value is again ap-
proximated through sampling (with budget `), and the subset size is upperbounded
by conc limit. If there are multiple abstract cost function with the same max cost it
selects the one with the highest probability. Similar to the algorithm described in the
chapter, here we incrementally increase the max concept size till we find an abstract
cost function that meets the requirement.

Confidence Calculation

For confidence calculation, we will be relying on the relationship between the
random variables as captured by Figure A.2 (A) for precondition identification and
Figure A.2 (B) for cost calculation. Where the various random variables captures
the following facts: Os

a - indicates that action a can be executed in state s, ci ∈
pa - concept ci is a precondition of a, Os

ci
- the concept ci is present in state s,

Cabss ({ci}, a) ≥ k - the abstract cost function is guaranteed to be higher than or equal
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Figure A.2: A Simplified Probabilistic Graphical Models for Explanation Inference,
Subfigure (A) and (B) Assumes Classifiers to Be Completely Correct, While (C) and
(D) Presents Cases Where the Classifier May Be Noisy.

to k and finally OC(s,a)>k - stands for the fact that the action execution in the state
resulted in cost higher than or equal to k. Since we don’t know the exact relationship
between the current concept in question is, for notational convenience we will use the
symbol OC(s)\ci to stand for the other concepts observed in the given state.

We will allow for inference over these models, by relying on the following simplify-
ing assumptions - (1) the distribution of all non-precondition concepts in states where
the action is executable is the same as their overall distribution across the problem
states (which can be empirically estimated), (2) cost distribution of an action over
states corresponding to a concept that does not affect the cost function is identical
to the overall distribution of cost for the action (which can again be empirically esti-
mated). The first assumption implies that the likelihood of seeing a non-precondition
concept in a sampled state is equal to the likelihood of it appearing in any sampled
state. In the most general case this distribution can be given as P (ci|OC(s)\ci), i.e.
the likelihood of seeing this concept given the other concepts in the state. This dis-
tribution can be empirically estimated per user (or shared vocabulary) independent
of the specific explanatory query. While the second one implies that for a concept
that has no bearing on the cost function for an action, the likelihood that executing
the action in a state where the concept is present will result in a cost greater than
k will be the same as that of the action execution resulting in a cost greater than
k for a randomly sampled state (pC(.,a)≥k). This assumption can be further relaxed
by considering the distribution of the action cost under the observed set of concepts
(though this would clearly require more samples to learn).

For a single sample, the posterior probability of explanations for each case can be
expressed as follows: For precondition estimation, updated posterior probability for
a positive observation can be computed as P (ci ∈ pa|Osci ∧O

s
a ∧OC(s)\ci) = (1− P (ci 6∈

pa|Osci ∧O
s
a ∧OC(s)\ci)), where
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P (ci 6∈ pa|Osci ∧O
s
a ∧OC(s)\ci)

=
P (Osci |ci 6∈ pa ∧O

s
a ∧OC(s)\ci) ∗ P (ci 6∈ pa|Osa ∧OC(s)\ci)

P (Osci |Osa ∧OC(s)\ci)

Given ci 6∈ pa is independent of Os
a and OC(s)\ci also expanding the denominator we

get

=
P (Osci |ci 6∈ pa ∧O

s
a ∧OC(s)\ci) ∗ P (ci 6∈ pa)

P (Osci |ci 6∈ pa ∧O
s
a ∧OC(s)\ci) ∗ P (ci 6∈ pa)+

P (Osci |ci ∈ pa ∧O
s
a ∧OC(s)\ci) ∗ P (ci ∈ pa)

From our assumption, we know P (Os
ci
|ci 6∈ pa ∧ Os

a ∧ OC(s)\ci) is same as the dis-
tribution ci over the problem states (p(ci|OC(s)\ci)) and P (Os

ci
|ci ∈ pa ∧ Os

a) must be
one.

=
p(ci|OC(s)\ci) ∗ P (ci 6∈ pa)

p(ci|OC(s)\ci) ∗ P (ci 6∈ pa) + P (ci ∈ pa)

For cost calculation, we can ignore OC(s)\ci , since according to the graphical model
once the concept ci is observed, OC(s,a)≥k is independent of the other concepts.

P (Cabss ({ci}, a) ≥ k|Osci ∧OC(s,a)≥k) =
P (OC(s,a)≥k|Osci ∧ C

abs
s ({ci}, a) ≥ k) ∗ P (Cabss ({ci}, a) ≥ k|Osci )

P (OC(s,a)≥k|Osci )

Where P (OC(s,a)≥k|Os
ci
, Cabss ({ci}, a) ≥ k) should be 1 and Cabss ({ci}, a) ≥ k indepen-

dent of Os
ci

. Which gives

=
P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k|Osci)

=
P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k|Osci , C
abs
s ({ci}, a) ≥ k)) ∗ P (Cabss ({ci}, a) ≥ k))+

P (OC(s,a)≥k|Osci ∧ ¬C
abs
s ({ci}, a) ≥ k))× P (¬Cabss ({ci}, a) ≥ k))

From our assumptions, we have P (OC(s,a)≥k|Os
ci
∧ ¬Cabss ({ci}, a) ≥ k)) = pC(.,a)≥k

=
P (Cabss ({ci}, a) ≥ k)

P (Cabss ({ci}, a) ≥ k)) + pC(.,a)≥k ∗ P (¬Cabss ({ci}, a) ≥ k))

Using Noisy Concept Classifiers

Note that in previous sections, we made no distinction between the concept being
part of the state and actually observing the concept. Now we will differentiate between
the classifier saying that a concept is present (Os

ci
) is a state from the fact that the

concept is part of the state (ci ∈ C(S)). Here we note that the learned relationship is
over the actual concepts in the state rather than the observation (and thus we would
need to learn it from states with true concept labels). The relationship between
the random variables can be found in Figure A.2 (C) and (D). We will assume that
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the probability of the classifier returning the concept being present is given by the
probabilistic confidence provided by the classifier. Of course, this still assumes the
classifier’s model of its prediction is accurate. However, since it is the only measure
we have access to, we will treat it as being correct. Now we can use this updated
model for calculating the confidence. For the precondition estimation, we can update
the posterior of a concept being a precondition given a negative observation (Os

¬ci)
using the formula

P (ci 6∈ pa|Os¬ci ∧O
s
a ∧OC(s)\ci) =

P (Os¬ci |ci 6∈ pa ∧O
s
a ∧OC(s)\ci) ∗ P (ci 6∈ pa|Osa ∧OC(s)\ci)

P (Os¬ci |Osa ∧OC(s)\ci)

Where P (ci 6∈ pa|Os
a ∧ OC(s)\ci) = P (ci 6∈ pa) and we can expand P (Os

¬Ci |ci 6∈
pa ∧Os

a ∧OC(s)\ci) as follows

P (O¬ci |ci 6∈ pa ∧Osa ∧OC(s)\ci) =

P (O¬ci |ci ∈ C(s)) ∗ P (Ci ∈ C(s)|ci 6∈ pa ∧Osa ∧OC(s)\ci)+

P (O¬ci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s)|ci 6∈ pa ∧Osa ∧OC(s)\ci)

Where as defined earlier P (ci 6∈ C(s)|ci 6∈ pa ∧ Os
a ∧ OC(s)\ci) and P (ci ∈ C(s)|Ci 6∈

pa ∧ Os
a ∧ OC(s)\ci) would get expanded to the learned relationship between the con-

cepts and their corresponding observation model. The denominator also needs to be
marginalized over ci 6∈ C(s).

Similarly for posterior calculation for positive observations, we have

P (Osci |ci 6∈ pa ∧O
s
a ∧OC(s)\ci) =

P (Oci |ci ∈ C(s)) ∗ P (ci ∈ C(s)|ci 6∈ pa ∧Osa ∧OC(s)\ci)+

P (Oci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s)|ci 6∈ pa ∧Osa ∧OC(s)\ci)

Now for the cost, we can similarly incorporate the observation model as follows.

P (Cabss ({ci}, a) ≥ k|Osci ∧OC(s,a)>=k) =

P (OC(s,a)≥k, O
s
ci |C

abs
s ({ci}, a) ≥ k)

∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)

=

(P (OC(s,a)≥k, O
s
ci |ci ∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (ci ∈ C(s))+

P (OC(s,a)>k, O
s
ci |ci 6∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (ci 6∈ C(s))) ∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)

Given their parents, OC(s,a)≥k and Os
ci

are conditionally independent, and given its

parent Os
ci

is independent of Cabss ({ci}, a) ≥ k), there by giving

=

(P (OC(s,a)≥k|ci ∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (Osci |ci ∈ C(s)) ∗ P (ci ∈ C(s))+

P (OC(s,a)≥k|ci 6∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (Osci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s))) ∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci )
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Now P (OC(s,a)≥k|ci ∈ C(s), Cabss ({ci}, a) ≥ k) = 1 and P (OC(s,a)≥k|ci 6∈ C(s), Cabss ({ci}, a) ≥
k) can either be empirically estimated from true labels or we can make the assump-
tion that is equal to pC(.,a)≥k (which we made use of in our experiments), which would
take us to

=

(P (Osci |ci ∈ C(s))P (ci ∈ C(s))+

pC(.,a)≥k ∗ P (Osci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s))) ∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)

Experiment Domains

Figure A.3: Montezuma Foils: Left Image Shows Foils for Level 1, (A) Move Right
Instead of Jump Right (B) Go Left over the Edge Instead of Using Ladder (C) Go
Left Instead of Jumping over the Skull. Right Image Shows Foil for Level 4, (D) Move
down Instead of Waiting.

For validating the soundness of the methods discussed before, we tested the ap-
proach on the open-AI gym implementation of Montezuma’s Revenge (Brockman
et al., 2016) and variants of Sokoban (Schrader, 2018). Most of the search experi-
ments were run on an Ubuntu 14.0.4 machine with 64 GB RAM.

For Montezuma, we used the deterministic version of the game with the RAM-
based state representation (the game state is represented by the RAM value of the
game controller, represented by 256-byte array). We considered executing an action
in the simulator that leads to the agent’s death (falling down a ledge, running into an
enemy) or a non-NOOP (NOOP action is a specific agent action that is designed to
leave agent’s state unchanged) action that doesn’t alter the agent position (trying to
move left on a ladder) as action failures. We selected four possible foils for the game
(illustrated in Figure A.3), three from level 1 and one from level 4. The base plan in
level 1 involves the agent reaching the key, while level 4 required the agent to cross
the level.

For Sokoban, we considered two variants with a single box and a single target.
Both variants allow for 8 actions and a NOOP action. Four of those actions are
related to the agent’s movements in the four directions and four to pushing in specific
directions. We restricted the move actions only to be able to move the agent if the
cell is empty, i.e., it won’t move if there is a box or a wall in that direction. The push
action also moves the agent in the direction of push if there is a box in that direction,
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Figure A.4: Sokoban Foils: Left Image Shows Foils for Sokoban-switch, Note That
the Green Cell Will Turn Pink Once the Agent Passes It. Right Image Shows Foil
for Sokoban-cell.

and the agent will occupy the cell previously occupied by the box (provided there
are no walls to prevent the box from moving). Similar to Montezuma, we consider
any action that doesn’t change the agent position to be a failure. The first version
of Sokoban included a switch the player could turn on to push the box (we will refer
to this version as Sokoban-switch), and the second version (Sokoban-cells) included
particular cells from which it is costlier to push the box. We considered two versions of
Sokoban-switch, one in which turning on the switch only affected the cost of pushing
the box and another one in which it was a precondition. For the cost case of Sokoban-
switch, while the switch is on (i.e. the cell is pink), all actions have unit cost, while
when the switch is off, the cost of pushing actions is 10. The cell can be switched
on by visiting it, and any future visit will cause it to turn off. For the precondition-
version, pushing of the box while the switch is off causes the episode to end with
high cost (100). Since we also trained an RL agent for this version for generating
the saliency map. We also added a small penalty for not pushing the switch and a
penalty proportional to the distance between the box and the target. In Sokoban-
cells, the cost of all actions except pushing boxes in the pink region is one, while that
of pushing boxes in the pink region is 10. We selected one foil per variation, and the
original plan and the foil are shown in Figure A.4.

Concept Learning For Montezuma, we came up with ten base concepts for each
level that approximates the problem dynamics at the level, including the foil fail-
ure. We additionally created ten more concepts by considering the negations of
them. All state samples (used to generate the samples for the classifier and the
algorithm) were created by randomly selecting one of the states from the original
plan and then performing random walks from the selected state. For the classifiers,
we used game-specific logic and RAM byte values to identify each positive instance
and then randomly selected a set of negative examples. We used around 600 posi-
tive examples (except for the concepts skull on right and skull on left in level 1,
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which had 563 and 546 examples, respectively) and twice as many negative exam-
ples for each concept. These RAM state examples were fed to a binary AdaBoost
Classifier (Freund et al., 1999) (Scikit-learn implementation (Pedregosa et al., 2011)
version 0.22.1, with default parameters), with 70% of samples used as train set and
the rest as the test set, for each concept. Finally, we obtained a test accuracy range
of 98.57% to 100%, with an average of 99.72% overall concepts of both the levels.
All the samples used for the classifier were collected from 5000 sampling episodes
for level 1 and 4000 sampling episodes for level 4. During the search, We used a
threshold of 0.55 on classifiers for concepts of level 1, such that a given state has a
given concept when the classifier probability is greater than 0.55, to reduce false posi-
tives. The code for sampling and training the classifiers can be found in the directory
PRECOND BLACKBOX/sampler and conceptTrain inside the code directory.

Concept Collection

For the Sokoban variants, we wanted to collect at least the list of concepts from
people. We used surveys to collect the set of concepts. The survey allowed par-
ticipants to interact with the game through a web interface, and at the end, they
were asked to specify game concepts that they thought were relevant for particular
actions. Each user was asked to specify a set of concepts that they thought were
relevant for four actions in the game. They were introduced to the idea of concepts
and their effect on the action by using PACMAN as an example and presenting three
example concepts. For Sokoban-switch, we collected data from six participants, four
of whom were asked to specify concepts for push actions and two people for move
actions. For Sokoban-cell, we collected data from seven participants, six of whom
were asked to specify concepts for push actions, and one was asked to specify con-
cepts for move action. We went through the submitted concepts and clustered them
into unique concepts using their description. We skipped ones where they just listed
strategies rather than concepts describing the state. We removed two concepts from
the Sokoban-cell list and two from Sokoban-switch because we couldn’t make sense
of the concept being described there. For Sokoban-switch, we received 25 unique
concepts, and for Sokoban-cell, we collected 38 unique concepts. We wrote scripts
for each of the concepts and used it to sample example states. We ran the sampler
for 1000 episodes to collect the examples for the concepts. We trained classifiers for
each of the concepts that generated more than 10 positive examples for the concepts.
For sokoban-switch, we removed two additional concepts because their training set
didn’t contain any positive examples. We had, on average, 178.46 positive examples
for Sokoban-cell per concept and 215.55 for Sokoban-switch. We used all the other
samples as negative examples. We again used 70% of samples for training and the
remaining for testing. We used Convolutional Neural Networks (CNNs) based clas-
sifiers for the Sokoban variants. The CNN architecture involved four convolutional
layers, followed by three fully connected layers that give a binary classification out-
put. The average accuracy of the Sokoban-switch was 99.46%, and Sokoban-cell was
99.34%. The code used for sampling and training for each domain can be found
under the folder COST TRAINER (inside the directory BLACKBOX CODE). The
classifier network is specified in the file CNNnetwork.py. The details on how to run
them are provided in the README file in the root code directory.
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Explanation Identification

For Montezuma, the concept distribution was generated using 4000 episodes, and
the probability distribution of concepts ranged from 0.0005 to 0.206. For some of the
less accurate models, we did observe false negatives resulting in the elimination of
the accurate preconditions and empty possible precondition set. So we made use of
the probabilistic version of the search with observation probabilities calculated from
the test set. We applied a concept cutoff probability of 0.01, and in all cases, the
precondition set reduced to one element (which was the expected precondition) in
under the 500 step sampling budget (with the mean probability of 0.5044 for foils
A, B & C. Foil D, in level 4, gave a confidence value of 0.8604). The ones in level 1
had lower probabilities since they were based on more common concepts, and thus,
their presence in the executable states was not strong evidence for them being a
precondition.

For each Sokoban variant, we ran another 1000 episode sampler, which used ran-
dom restarts from the foil states to collect samples that we used for the explanation
generation. During the generation of the samples, we used the previously learned
classifiers to precompute the mapping from concepts to states.

We used a variant of Figure A.1(b), where we sped up the search by allowing
for memoization. Specifically, when sampling is done for an action and a specific
conc limit for the first time, then we precompute the min-cost for all possible concept
subset of that size. Then for every step that uses that action, we look up the min value
for the subset that appears in the state. The search was run with a sampling budget
of 750. For calculating the confidence, all required distributions were calculated only
on the states where the action was executable. Again the search was able to find
the expected explanation. We had average confidence of 0.9996 for the Sokoban-
switch and 0.998 for the Sokoban-cell. The exact observation models values used
can be found in constant.py under the directory COST BLACKBOX/src, and the
file cost explainer.py in the same directory contains the code for the exact search we
used.

In terms of time taken to generate the sample, creating 100 samples from mon-
tezuma for the first screen (averaged across the foils) took 59.754 seconds, montezuma
second screen it took 97.673 seconds (the additional time is due to the overhead of the
agent being moved to the new level before the start of the episode) and the Sokoban
variants took 40.660 secs.

User Study

With the basic explanation generation method in place, we were interested in
evaluating if users would find such an explanation helpful. Specifically, the hypotheses
we tested were

H1: People would prefer explanations that establish the corresponding model com-
ponent over ones that directly presents the foil information (i.e. the failing action and
per-step cost)

H2: Concept-based precondition explanations help users understand the task better
than saliency map based ones.

483



Figure A.5: Saliency Map Based Explanation Shown to Users as Part of H2

To evaluate this, we performed a user study with all the foils used along with the
generated explanation and a simple baseline. In the study, each participant was
presented with a random subset of the concept we used for the study (around five)
and then was shown the plan and a possible foil. Then the participant was shown
two possible explanations for the foil (the generated one and the baseline) and asked
to choose between them. There were additional questions at the end asking them
to specify what they believed was the completeness of the selected explanation, on a
Likert scale from 1 to 5 (1 being least complete and 5 being the most). They were
also provided a free text field to provide any additional information they felt would
be useful.

For precondition explanation, the options showed to the user includes one that
showed the state at which the foil failed along with the information that the action
cannot be executed in that state and the other one reported that the action failed
because a specific concept was missing (the order of the options was randomized). In
total, we collected data from 20 participants, where 7 were women, the average age was
25, and 10 people had taken an AI class. We found that 19 out of the 20 participants
selected precondition based explanation as a choice. On the question of whether the
explanation was complete, we had an average score of 3.476 out of 5 on the Likert
scale (1 being not at all complete and 5 being fully complete). The results seem to
suggest that information about missing precondition are useful explanations though
these may not be complete. While not a lot of participants provided information on
what other information would have been useful, the few examples we had generally
pointed to providing more information about the model (for example, information
like what actions would have been possible in the failed state).

For the cost function explanation, the baseline involved pointed out the exact
cost of executing each action in the foil, and concept-explanation showed how certain
concepts affected the action costs. In the second case, all action costs were expressed
using the abstract cost function semantics in that they were expressed as the ‘action
costing at least X’ even though in our case, the cost was the same as the abstract cost.
For the cost condition, again, we collected 20 replies in total (ten per foil) and found
14 out of 20 participants selected the concept-based explanation over the simple one.
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The concept explanations had, on average, a completeness score of 3.214 out of 5.
The average age of the participants was 24.15, 10 had AI knowledge out of 20 people,
11 were masters students (rest were undergrad), and we had 14 males, 5 females, and
one participant did not specify.

For H2, as mentioned the baseline was a saliency map based explanation. For
generating the saliency map, we trained the RL agent using DQN with prioritized
experience replay (Schaul et al., 2015)1. The agent was trained for 420k epochs. The
Saliency map itself was generated for four states, with the agent placed on the four
sides of the box. The saliency map itself was generated using (Greydanus et al., 2018),
where we used only the procedure for generating the map for the critic network2.
Figure A.5 shows the saliency map generated for one of the images. This was shown
when the user tried push up action and fails. At the beginning of the study, both
groups of the users were made to familiarize themselves with five concepts that were
randomly ordered (the concepts themselves remained the same) and had to take a
quiz matching new states to those concepts, before moving on to play the game. Out
of the 60 responses we considered, 16 identified as female and 41 identified as men.
23 of the participants reported they had some previous knowledge of AI, but only
three participant reported having any planning knowledge. The participants who got
concept based explanations took 43.78 ± 12.59 secs (95% percentile confidence) and
35.87 ± 9.69 steps on average to complete the game. On the otherhand participants
of the other group took 134.24 ± 61.72 secs and 52.64 ± 11.11 steps on average.

Below, we have included some screenshots of the interface

Analysis of Assumptions Made for Confidence Calculations

In this section we present results from additional tests we ran to verify some of the
assumptions made in the confidence calculations on the Sokoban variants. We mainly
focused on Sokoban variants since the concepts were collected directly from users and
we tested the assumptions - (1) the distribution of all non-precondition concepts in
states where the action is executable is the same as their overall distribution across
the problem states (which can be empirically estimated) and (2) cost distribution
of an action over states corresponding to a concept that does not affect the cost
function is identical to the overall distribution of cost for the action (which can
again be empirically estimated). We didn’t run a separate test on the independence
of concepts as we saw that many of the concepts listed by the users were in fact
correlated and were denoting similar or even the same phenomena. All concepts
were assumed to be distributed according to a Bernoulli distribution, whose MLE
estimates were calculated by running the sampler for ten thousand episode, where
we used states from the original successful/optimal plan as the initial state for the
random walk (ensuring the distributions are generated from state space local to the
plan of interest). For first assumption, we compared the distribution of concept for
states where the action was executed against the distribution of the concept over all
the sampled states. For the second assumption, we compared the distribution of the

1For exact agent, we followed the approach described in https://github.com/higgsfield/
RL-Adventure/blob/master/4.prioritized%20dqn.ipynb

2We made use of the code available at https://github.com/greydanus/visualize_atari
which had a GPL licence
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Action Concept with Max Absolute Average Difference
Max difference Difference in Estimates in Estimates

push up empty above 0.018 0.004
push down empty below 0.0154 0.0033
push left empty below 0.0163 0.0037

push right empty below 0.0172 0.0046
move up empty left 0.002 0.0009

move down wall left 0.0017 0.0007
move left empty right 0.0032 0.0009

move right empty right 0.0045 0.0008

Figure A.6: Results from Sokoban-switch on the Distribution of Non-precondition
Concepts for Each Action. For Each Action the Table Reports the Concept with
the Maximum Difference Between the Distribution of Concept for That Specific Ver-
sion, Versus the Overall Distribution and the Average Difference in Estimates Across
Concepts.

Domain Action Concept with Max Absolute Average Difference
Max difference Difference in Estimates in Estimates

Sokoban-Switch

push up wall left below of box 0.1132 0.0461
push down wall left below of box 0.1107 0.0473
push left above switch 0.1135 0.0461

push right wall left below of box 0.111 0.0479

Sokoban-Cell

push up box on right 0.0956 0.0411
push down box on right 0.1098 0.0476
push left box on right 0.1012 0.0486

push right wall on left 0.0889 0.0433

Table A.1: Results from Sokoban-switch and Sokoban-cell on the Distribution of
Action Cost Across Different Concepts. Here We Report Only the Cost for Push
Actions, since Only Those Actions Result in Higher Cost.

states with the high cost (>=10) where the concept is present versus the distribution
of high cost for the action.

Table A.6, summarizes the results from testing the first assumption for Sokoban-
switch. For each action the table reports the non-precondition concept which had
the maximum difference in estimates (the reported difference in the table). In this
domain, the only precondition concept is switch on for the push actions. As we can
see for the domain, the differences are pretty small and we expect the differences to
further reduce once we start accounting the correlation between concepts.

Table A.1 presents the results for the second assumption. In the cases of Sokoban-
switch, we again skipped the switch on concept and for Sokoban-Cell we skipped the
concepts related to the pink cells since they are all highly correlated to central concept
controlling the cost function (on pink cell).

Extended Discussion

Collecting Concepts In most of the current text, we expect the set of concepts
and classifiers to be given. As such before the system is actually used in practice
we would have a stage where the initial set of concepts are collected. Collecting
all the concepts from the same user may be taxing, even if we made use of more
straightforward methods to learn the classifiers. Instead, a more scalable method may
be to set up domain-specific databases for each task that includes the set of commonly
used concepts for the task. This was also the strategy used by Cai et al. (2019), who
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created a medical concept database to be used along with TCAV explanations. One
could also use off-the-shelf object recognition and scene graph generation methods to
identify concepts for everyday settings.

Describing Plans: While contrastive explanations are answers to questions of the
form “Why P and not Q?”, we have mostly focused on refuting the foil (the “not Q?”
part). For the ”Why P” part the agent could start by demonstrating its plan to show
why it is valid and report the total cost it may accumulate. We can further augment
such traces with the various concepts that are valid at each step of the trace. We can
also report a cost abstraction for the cost function corresponding to each step taken
as part of the plan. Here the process for finding the cost abstraction stays the same
as what is described in Section 15.4.

Stochastic Domains: While most of the discussions in the chapter have been
focused on deterministic domains, these ideas also carry over to stochastic domains.
The way we are identifying preconditions and estimating cost functions remain the
same in stochastic domains. The only difference would be the estimation of the value
or the failure point of the foil. One way to easily adapt them to our method would
be to compare against the worst case, or best case execution cost of the foil or the
failure point under one of the execution traces corresponding to the foil. So the only
change we would need to make to the entire method is before the actual search starts.
Namely, when the agent is trying to simulate the foil in its own model, rather than
doing it once, it would need to simulate it multiple times and look for the worst-
case or best-case trace. Another possibility is rather than looking for the worst-case
execution trace, would be to consider the most likely traces and perform the same
process but now over a set of possible foils.

Partial Observability and Non-Markovian Concepts: The chapter focuses on
cases where the mapping is from each state to concept. Though there may be cases
where the concept the user is interested in corresponds to a specific trajectory. Or
there may be cases where there may be some disparity between the internal state of the
agent and what the human can observe, or the problem itself is partially observable.
In such cases, rather than learning a concept that is completely identified by the
current state, the system may need to learn mappings from state action trajectories
(or observation histories) to concepts. Then the rest of the process stays the same
(except the search process now needs to keep track of history). We can still use
the same class of symbolic models as before because while these concepts are non-
markovian with regards to the underlying model, the fact that the concept symbols
are part of the symbolic model state means any action transition or cost function that
depends on these concepts can be defined purely with respect to the current state.

Temporally Extended Actions: Another assumption we have made through the
chapter is that the action space stays the same across the symbolic and internal
models. However, this may not always be true. For domains like robotics, the human
may be reasoning about the actions at a higher level of abstractions than what the
agent may be considering. Such actions may be modeled as temporal abstractions
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(for example, options (Sutton et al., 1999)) defined over the agent’s atomic actions.
If such abstract actions are not pre-specified to the agent, it could try to learn it
by a process similar to how it learned concepts. Once learned, the agent can either
directly simulate these temporally abstract actions to identify its preconditions (for
options, a characterization of its initiation set) and cost function (the expected cost
over the holding time) or from the sampled traces which correspond to the execution
of these abstract actions (if the system could only learn a mapping from trajectories
to action labels).

Acquiring New Concepts: In the main text, we discussed how the original vocab-
ulary set may be incomplete and how our search algorithms could identify scenarios
when the concept list is incomplete and insufficient to generate the required expla-
nation. In such cases, the system would need to gather more concepts from the user.
While the system could ask the user for any previously unspecified concepts, this
would just result in the user wasting time specifying potentially irrelevant concepts.
One would preferably want to perform a more directed concept acquisition. One pos-
sibility might be to use the system’s internal model to provide hints to the user as
to what concepts may be useful. For example, the system could generate low-level
explanations like saliency maps to highlight the parts of the state that may be impor-
tant and ask for concepts that are relevant to those states. Once the new concepts are
collected, we can again make use of our current approach to see if any of the concepts
could be used to build a satisfactory explanation. One could also wrap the entire
interaction into a meta-sequential decision-making framework, where the framework
captures the repeated interaction between the user and the system. The actions that
are available to the meta decision-maker would include the ability to query the user
for more concepts and the objective would be to reduce the overall burden placed on
the user. While one could follow the basic interaction pattern laid out in this chapter,
namely, querying the user only when the current set of concepts proves to be insuffi-
cient, the use of such a reasoning framework would allow the system to pre-emptively
collect concepts from the user that may be useful for future interactions.

Confidence Threshold Our system currently expects to be provided a confidence
threshold that decides the minimum confidence that must be satisfied by any expla-
nation provided to the user. Such a threshold may be provided by the stakeholders
of the domain/system or the user. One could also determine when to provide expla-
nations based on decision-theoretic principles. Since the confidence values are just
probabilities, if the system has access to penalty values attached to getting an ex-
planation wrong, then it can associate an expected value to an explanation (since
after all the confidence is just the probability of the fact being true) and use it drive
its decisions. This penalty value could be associated with both the user potentially
making a mistake because of incorrect information but also could be related to a
loss of trust from the system providing an incorrect explanation. One could also use
our explanatory methods along with the explanatory confidence in the context of
trust-aware decision-making systems like that presented by Zahedi et al. (2021).

Ethical Implications The use of confidence values makes sure that the system is
not giving explanations to humans that it doesn’t have high confidence in, thereby
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Figure A.7: Screenshot from the Survey Done to Collect Sokoban Concepts.

sidestepping many of the core issues related to post hoc explanations. One of the
assumptions we have made in the chapter that allows us to do this is that the agent
can correctly reason over its internal model. So if we can learn an equivalent rep-
resentation for this internal model, then one could guarantee that the explanations
are sound, in so far that the agent would only generate behaviors that align with the
stated model components. However, this assumption may not always hold and the
agent could generate behavior that may not conform to its internal models. Unfor-
tunately, in such cases, we would need additional mechanisms to test whether the
agent conforms to the identified model component. Otherwise, the explanation could
lead to the human assigning undeserved trust to the agent. One scenario where the
soundness of the agent’s reasoning process doesn’t matter are cases where the mech-
anism described in the chapter is being used purely as a way to generate preference
accounts (Langley, 2019), i.e., the system is purely trying to explain why one decision
may be better than other in terms of its model of the task, regardless of how the
agent generated the original decision. Such explanations could be helpful in cases
where the agent and the user are collaborating to generate better solutions.

Study Interface Screenshots
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Figure A.8: Screenshot from the Study Interface for H1 for Precondition.
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Figure A.9: Screenshot from the Study Interface for H1 for Cost Function Explana-
tions.
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Figure A.10: Screenshot from the Study Interface for H2.
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Proof for Theorem 1

Theorem 16. Given a canonical augmented model ME for the human and robot
models MR and MH , if the sum of cost of all explanatory actions is less than or
equal to ∆πMR

and if πE is an optimal plan for ME , then D(πE) is optimal for MR

and E(πE) is the MCE for D(πE). Additionally, there exists no plan π ∈ Π∗H such that
MCE for π is cheaper than E(πE).

Proof Sketch. We observe that there exists no valid plan π′ for the augmented model
(ME) with a cost lower than that of πE and where the ontic fragment (D(π′)) is
optimal for the human model. Let’s assume D(πE) 6∈ Π∗R (i.e current plan’s ontic
fragment is not optimal in robot model) and let π̂ ∈ Π∗R. Now let’s consider the

augmented plan corresponding to π̂, π̂E , i.e, E(π̂E) = EMR,MH

MCE (π̂) (the MCE for the
plan π̂) and D(π̂E) = π̂. Then the given augmented plan π̂E is a valid solution for
our augmented planning problem ME (since the π̂E consists of the MCE for π̂, the
plan must be valid and optimal in the human model), moreover the cost of π̂E must
be lower than πE . This contradicts our earlier assumption hence we can show that
D(πE) is in fact optimal for the robot model.

Using a similar logic we can also show that no cheaper explanation exists for πE
and there exists no other plan with a cheaper explanation.

USAR Domain

The basic scenario consists of an autonomous agent that has been deployed to
the disaster scene and an external commander who is monitoring the activities of the
robot. Both agents start with the same model of the world (i.e the map of the building
before the disaster) but the models diverge over time owing to the fact that robot has
access to more accurate information about the current status of the building. In the
specific setting we are looking at the robot start at position P1 and needs to reach
position P14. The main difference between the human and robot maps is the fact that
the human incorrectly believes that the path from P5 to P6 is clear while that from
P8 to P12 is blocked. The robot could potentially clarify these two misconceptions
through the explanatory actions –

( : a c t i on exp la in obs t ructed P6 P5
: p r e cond i t i on
( and
)
: e f f e c t
( and

(B ( obstructed P6 P5 ) )
( i n c r e a s e ( t o ta l −co s t ) 10)

)
)
( : a c t i on expla in away obstructed P8 P12

: p r e cond i t i on
( and
)
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: e f f e c t
( and

( not (B ( obstructed P6 P5 ) ) )
( i n c r e a s e ( t o ta l −co s t ) 10)

)
)

The robot could also potentially explain the obstruction or (the fact that the
passage is clear) by visiting it

( : a c t i on move from P7 P8
: p r e cond i t i on
( and

( robot at P7 ) ( connected P7 P8 )
(B ( connected P7 P8 ) )
(B ( robot at P7 ) ) )

: e f f e c t
( and

( robot at P8 ) (B ( robot at P8 ) )
(B ( c l ear P8 P12 ) )
( i n c r e a s e ( t o ta l −co s t ) 1 ) )

)
( : a c t i on move from P1 P6

: p r e cond i t i on
( and

( robot at P1 ) ( connected P1 P6 )
(B ( connected P1 P6 ) )
(B ( robot at P1 ) ) )

: e f f e c t
( and

( robot at P6 ) (B ( robot at P6 ) )
( not B ( c l ear P6 P5 ) )
( i n c r e a s e ( t o ta l −co s t ) 1 ) )

)

A Unifying Framework for Multi-model Planning

Since the foundational paper on model reconciliation, the approach has been ex-
tended to support many new features. Some of the most relevant ones are the ability
to support incomplete information about the human mental model (Sreedharan et al.,
2018a) and the ability to generate explanations when the human model is at a differ-
ent level of abstraction (Sreedharan et al., 2018c). It is easy to see that the proposed
encoding can be easily extended to capture most of these extensions.

In the case of model uncertainty, we can capture this by assuming that the initial
value of the meta-state fluents (Fµ) is unknown and then generating either conformant
or contingent plans. For generating conformant plans, we can either use techniques
discussed by Palacios and Geffner (2009) and Muise et al. (2015) and compile it into
a classical planning problem or directly perform a search in the belief space. We can
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also use the intuition of min and max models that were introduced by Sreedharan
et al. (2018a) to consider a much smaller belief space. When generating contingent
plans, we will need to consider additional actions for collecting information about the
human models.

In cases where the more abstract models of the task can be formed by simply
projecting out fluents from the rules in the model, our encoding can be extended to
handle them by introducing new meta-fluents that capture whether the human knows
about certain state fluents. Now each effect or precondition in the augmented model
related to these state fluents will be also conditioned on these new meta fluents. This
captures the fact that you can ignore those rules if the human did not know about
the fluents that appear in them. We can also add new explanatory actions that turn
these meta fluents true. These new explanatory actions capture the ability to explain
these state properties to the human observer.

Another aspect investigated by Sreedharan et al. (2018c) was the fact that we
may not need to give the entirety of MCE, but rather just provide explanations
corresponding to specific user queries. This queries take the form of user specifying a
set of alternate plans (referred to as foils). In such, cases we can guarantee that there
exist a subset of the MCE generated by the algorithm that can resolve the given set
of foils. We can thus first generate the MCE and then look for appropriate subsets.

We can also extend the formulation to support more expressive models such as
ones with disjunctive preconditions and cases where the models may differ in actions
costs. For disjunctive preconditions, the easiest method would be to just normalize the
preconditions to CNF and then use a different action for each precondition clause. For
cases with differing costs, we will need to keep track of the cost of the plan according
to the robot and the plan cost as perceived by the human. The augmented model
should now try to minimize the weighted sum of these two costs (again we can use
optimality gap to establish how these components should be weighed). We will also
need to use state dependent costs to capture the fact that the human’s perceived cost
can change.

New Explanatory Capabilities

The formulation allows us to not only capture previously discussed approaches,
but also allows us to generate explanatory behavior that has not been previously
studied. We will look at these new capabilities by grounding the need for these
capabilities in the USAR scenario.

Explanatory Actions With Ontic Effects

As soon as we start considering explanatory actions in our encoding it is inevitable
that they would have other side effects. Consider an action that at first glance may
seem purely communicative like, using natural language utterances or using some
mixed-reality techniques to project some information, it may still have other effects
on the task state like reducing the robot’s power levels, blocking communication
channels etc. Similarly action that may appear to only have task level effect may
still end up updating the human’s mental state. For example, the robot opening a
door is enough to inform the human that the door was not locked in the first place
and does not require a separate communication action. These side effects need to be
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taken into account when coming up with the plan and its explanations.
To illustrate the use of such explanatory actions in our encoding let us visit the

USAR scenario and assume that the human thinks that the path from P8 to P12
is blocked and the one from P6 to P5 is free. Also in this setting, for explaining
the status of passages (whether they are blocked or not) the robot can now use two
actions, one a rather expensive explicit communication action, that sends the updated
map information to the human or it can just visit the blocked passage and the human
who is watching a video feed of robot actions will learn that the passage is blocked
or clear. Thus the action descriptions for the move action will be –

( : a c t i on move from P7 P8
: p r e cond i t i on ( and ( robot at P7 )

. . .
(B ( robot at P7 ) ) )

: e f f e c t ( and ( robot at P8 )
. . .
(B ( c l ear P8 P12 ) ) ( i n c r e a s e ( to ta l −co s t ) 1 ) ) )

With this new action the robot knows that as soon as it reaches P8 the human
would know that the path from P8 to P12 is clear so it can continue on that path.
So the new robot plan will be –

INIT ACT→move from p1 p7→move from p7 p8→
move from p8 p12→move from p12 p15→
exp l a in ob s t ruc t ed p6 p5→
move from p15 p13→move from p13 p14→GOAL ACT

Balancing Explicability and Explanation

Previous literature has broadly identified two general strategies to handle in-
explicability of actions arising from model divergence, namely, reconcile the differences
through explanation or act in a manner that aligns with the human’s expectations
(referred to as explicable planning in the literature). It should be quite clear that
these aren’t necessarily mutually exclusive strategies and an explainable agent should
be capable of employing both strategies and trade them off to generate the most de-
sirable behavior. In this section, we will build on the work presented in Chapter 17
to show how such behavior can be generated using our new encoding.

Given the robot model MR and the human mental model MH , we assume a
utilitarian point of view that the quality of any given plan in each individual model
can be completely characterized by the plan’s cost in the model 1. As mentioned
earlier, in cooperative scenarios like the one studied in this chapter, the choice of a
plan can no longer be made by their perceived quality in any one of these individual
models, but rather we need to consider their impact on the entire team. Specifically,
we need to consider the cost incurred by the actor (the robot) and the degree to
which the plan conforms to the observer’s expectations (and hence impact their future
actions). This need for trade-off between the plan cost and the possible penalty

1We assume that the cost encapsulates both the value of soft-goals and actions costs and invalid
plans have infinite cost.
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Algorithm 11 Updated A∗-Search

1: procedure Goal Check(node, β)
2: if node.state ⊆ GR ∪ {B(p)|p ∈ GH} then
3: if (under budget) ∈ node.state then
4: node.cost ← node.cost + β ∗ (C(π∗H) - C(D(node.plan))) . π∗H - Optimal

human plan

5: if node.plan.peek() == a∞ then
6: return True
7: return False
8: procedure Find Successor Nodes(node, K, η, ME , α)
9: succ list ← {}

10: CE ← Identify Explanation Cost(node.plan)
11: if CE + min explanation cost > K then
12: new node.state ← node.state \ {(under budget)}
13: new node.plan = node.plan + {Stop Checking Budget}
14: new node.cost ← node.cost + η
15: succ list.push(new node)

16: for a ∈ applicable actions(node, ME) do
17: new node.state ← a(node.state)
18: new node.plan = node.plan + {a}
19: if a is an ontic action then
20: node.cost ← node.cost + α * C(a)
21: else
22: node.cost ← node.cost + C(a)

23: succ list.push(new node)

24: return succ list

incurred from producing inexplicable plan necessitates the development of planners
capable of generating behavior of varying characteristics. A simple one, was the
scenario discussed in Chapter 17 wherein an agent chooses to follow a costlier but
easy to explain plan (in their case consisting of only ontic actions) to potentially save
on the cost of communicating the required explanations. Similarly, there may be
cases where the robot can’t afford to either divert from the optimal plan or provide
the required explanations. For example, consider a USAR scenario where sending the
required explanatory message or deviating from the optimal path may result in delay
of rescue of a victim in a critical state. In such cases, the planner needs to be aware
of the fact that it is in fact incurring a penalty by not providing explanations, but
the cost of providing the explanations outweigh any benefits it may provide. In this
section, we will look at the planning formulation discussed earlier and look at the
types of explanatory behavior it can produce and propose to generalizations of this
formulation that allows us to provide a wide variety of additional behaviors.

1. Current Formulation - This corresponds to the planning formulation intro-
duced in Section 18.2.1. The goal of this formulation can be captured as

argminπ C(E(π)) + C(D(π))

Provided D(π) ∈ Π∗MH+E(π) and π(IME ) |=ME GME
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In this formulation, the search finds the plan in the augmented model with
the minimal cost that ensures the optimality of the plan in the human model.
As shown in Theorem 13, when the cost of the explanatory actions are scaled
down, the formulation can generate the purely explanatory behavior discussed
by Chakraborti et al. (2017). More interestingly this approach also allows us to
capture the explanation explicability trade-off discussed by Chakraborti et al.
(2019f), which is summarized as

argminπ,E C(E) + α | C(π)− C(π∗R) |

Provided π ∈ Π∗MH+E and π(IMR
) |=MR

GMR

Where C(E) is the cost of the explanation and | C(π)− C(π∗R) | the additional
penalty accrued by the robot by deviating from optimality. α specifies a hy-
perparameter that controls the degree to which the robot is ready to deviate
from the optimal, i.e. the higher the α, the more the robot would prefer to
stick to the optimal plan and provide more explanations. In our formulation, α
turns into a scaling factor over the cost of the ontic actions that can be used to
generate the same behaviors.

2. Allowing for Inexplicability - This is the relaxation of the earlier formu-
lation, where the robot now no longer requires the plan to be optimal in the
human model, but presenting a suboptimal plan can induce a penalty. This is
useful in cases where ensuring the optimality in human model can prove to be
too expensive and is optional. This formulation can be summarized as –

argminπ C(E(π)) + α ∗ C(π) + β ∗ (| C(π)− C(π∗H) |)

Given that π(IME ) |=ME GMR

We can model this penalty by setting the cost of a∞ to be the difference between
the optimal plan in the human model and the current plan. Note that we can use
this formulation to generate all the behavior supported by earlier formulation
by setting β sufficiently high.

3. Budgeted Explanation Generation - In most mission critical domains like
USAR there may be prespecified constraints on how much effort the robot could
spend on explanation, i.e, there may be a budget (K) on explanation. In this
formulation, as long as the explanations can be completed under budget the
robot would choose to follow the objective function defined earlier and when
the plan is over the budget the requirements to meet the human precondition
or apply the penalty is relaxed –

argminπ C(E(π)) + α ∗ C(π)+

γ ∗ β ∗ (| C(π)− C(π∗H) |) + (1− γ) ∗ η

Given that π(IMR
) |=MR

GMR
and

γ = 1,when, C(E(π)) ≤ K, else, γ = 0
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where η is the penalty term for choosing not to explain. Satisfying this condition
requires us to make the following changes to our formulation and search: a)
introduce a new fluent under budget and update the precondition of the actions
such that preconditions on belief fluents (B(∗)) are now conditioned on this
new fluent, i.e we will care about satisfying human preconditions only if there is
still budget left for explanations; b) the penalty for the plan not being optimal
is only added if we are under the explanation budget; c) we delete the fluent
under budget from the state when the current prefix has exhausted the budget or
the cost of the cheapest explanation is less than the leftover budget; and finally
d) deleting under budget fluent adds η to the current search cost, this is to ensure
that the search doesn’t exhaust the explanation budget while there exists plans
that can be explained. If we set the penalty to be higher than β ∗C(π′), where
π′ ∈ Π∗MR

we can still guarantee all the earlier behavior. Algorithm 11 sketches
the pseudo code for these new changes, in particular the procedure to generate
the successors and the procedure to perform the goal check that also adds the
penalty for inexplicability of the plan. The Find Successor Node procedure also
inserts a new action called Stop Checking Budget when the explanatory budget
is used up, and the cost of this action is set to η.

To illustrate the use of budgeted explanations and the need for sometimes gener-
ating inexplicable behavior, we go back to the urban search and rescue case. Here,
the optimal path for the robot to follow would be to go through P7, P8 and P12.
The human thinks the path should be the one through P6 and P5. Explaining the
optimality of the path requires explaining that the path from P6 to P5 is blocked
(which can be explained through the action explain obstructed P6 P5) and the path
from P8 to P12 is clear (explained by explain away obstructed P8 P12). Let us assume
that the application of each of these explanatory actions increases the total cost by
ten (please refer to the supplementary attachment for the PDDL description of each
of these actions). If we try to solve this with the second formulation with β = 1 and
a cost of 5 for the clear passage action, then the plan that would be generated would
be –

i n i t a c t→move from p1 p9→
c l e a r p a s s a g e p 9 p 1 0→move from p9 p10→
move from p10 p13→move from p13 p14→GOAL ACT

Now if we were to use a budget of five on the explanation, then no explanation
action is possible and during the second iteration the plan the robot would come up
with would be just the optimal plan.

INIT ACT→move from p1 p7→
move from p7 p8→ Stop Checking Budget→
move from p8 p12→move from p12 p15→
move from p15 p13→move from p13 p14→GOAL ACT

where Stop Checking Budget is the action that removes the under budget fluent from
the search.
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Explaining to an Inattentive Listener

Another assumption made by many of the earlier work is the fact that the human
observer is a perfect listener. Which means that once the explanation is provided she
will definitely include it in her reasoning. Unfortunately, this is not true in most cases.
The human’s ability to understand the explanation may depend on factors like the
hardness of the concept being explained is (for eg: explaining the robot’s reachability
vs the ability for the robot to pick up heavy objects) and the mode of explanation (a
simple visualization vs natural language) and even the cognitive load of the listener.
A more realistic approach would require us to model these uncertainties into the
explanatory process. Our encoding can be extended to incorporate such uncertainty
by making the effects of the explanatory actions non-deterministic or stochastic.

To see a simple example of how this would look, consider the USAR domain and
look at the ability of the move action to inform the commander about the status of
the passage from P8 to P12. The robot can not always guarantee that the commander
would be looking at the screen and there is a chance that the commander won’t be
looking at the screen when the path is presented. Thus in the new definition of action
(move from P7 P8) we will replace the effect that adds B(clear P8 P12) with the effect
(one-off (B(clear P8 P12)) (and)) Which means that the action’s ability to update the
human model is a non-deterministic effect. In this case, we can look for a conformant
plan by converting the earlier search into a search over belief space. A search node
only passes the goal test if the goal condition are met in every state in the belief
space. Thankfully, this particular problem does have a conformant solution –

exp l a in ob s t ruc t ed p6 p5→ e x p l a i n c l e a r p 8 p 1 2→
INIT ACT→move from p1 p7→move from p7 p8→
move from p8 p12→move from p12 p15→
move from p15 p13→move from p13 p14→ GOAL ACT

Reducing Search Effort During Secondary Search

We further improve the runtime efficiency of the proposed methods by allowing
the search to reuse the search space from one secondary search (for the optimal plan
in the updated human model) to another.

We do this by adopting the idea of sufficiency test for optimality introduced by
Fritz and McIlraith (2007). The paper shows that a plan is guaranteed to be optimal
if the value of the plan is better than fringe generated as part of the search for that
plan. Where fringe is defined to be the current open list and the set of nodes that
were found to be invalid during the search. The reason for keeping track of the
invalid sequences is to allow for the possibility of those nodes being available later.
This perfectly suits our requirements, since the change in the human model can
render many of the previously infeasible search paths become feasible and previously
feasible ones invalid. So in this setting, we will be carrying over the fringe and the
last generated optimal plan from one instance of the secondary search to another. If
the last generated optimal plan is still better than all the nodes in the fringe that will
still be the optimal plan, else the node for the current plan is added back into the
open list and the current best node is expanded. One point of interest is that if we
want to carry over the fringe from one instance to another we would want the f value
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Domain Name
Config-1 config-2

coverage avg-runtime (s) coverage avg-runtime (s)
Blocksworld 8/10 527.64 8/10 463.745
Elevator 10/10 51.38 10/10 10.37
Gripper 5/10 1165.905 5/10 1105.926
Driverlog 3/10 1557.543 3/10 1575.099
Satellite 1/10 1722.991 1/10 1713.878

Figure B.1: Table Showing Runtime for Explanations Generated for Standard IPC
Domains.

of the search nodes to stay steady. This means we need to use a heuristic value that
stays steady across the various action models. We can achieve this by using the hmax
(Bonet and Geffner, 2001) on a planning model M′ such that for any action a ∈ A′,
we have

pre (a) = pre (aR) ∩ pre (aH)

and

add (a) = add (aR) ∪ add (aH)

This new model over-approximates the possibles add effects each action can achieve
and under-approximates the precondition that needs to be satisfied for the applicabil-
ity of an action. The hmax estimate produced in this model will be less than or equal
to the estimate for the same state in any model that the human could potentially
possess (assuming model updates happen only through valid explanations).

Table B.1 shows the improvement in time achieved by including this technique to
our base search for a few IPC domains.

Figure B.2: The Basic Robot (Left) and Human (Right) Maps. The Robot Start at
P1 and Needs to Go to P14. The Human Incorrectly Believes That the Path from
P6 to P5 Is Clear and the One from P8 to P12 Is Blocked. Both Agents Know That
There Are Some Movable Rubble Between P9 and P10 That Can Be Moved with the
Help of a Costly Remove rubble Action.
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