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Abstract—The ability to provide useful and intuitive expla-
nations remains one of the major hurdles to creating robotic
systems capable of working effectively with everyday users.
In this paper, we consider a popular explanation generation
framework for robot task plans, namely model reconciliation,
and try to address one of its main drawbacks, namely its inability
to generate actionable explanations. The current methods for
generating model reconciliation focus on generating information
that explains why the robot chose a certain behavior over one
that was expected by the human. However, the user might also
want to understand how they can influence the robot’s behavior
so it follows the one that was expected from it. Explanations that
provide such information are called actionable, and we extend
traditional model reconciliation explanations to be actionable by
combining them with the existing notion of excuses. We will
refer to the resulting explanations as Actionable Reconciliation
Explanations (ARE), which explains the robot’s decision-making
process and suggests how its model might be modified for
improved alignment with human expectations. However, as we
will see, the generation of ARE requires methods that are
distinct from existing model reconciliation and excuse generation
methods, and ARE also exhibits properties that are distinct
from these earlier methods. We assess our method through
computational experiments and user studies and, in the process,
also compare it against traditional forms of excuses and model
reconciliation explanations.

Index Terms—XAI, Model Reconciliation, Actionable Expla-
nations, Excuses

I. INTRODUCTION

The field of Explainable AI, or XAI, has been getting much
attention in recent years. While the majority of works in
XAI have focused on single-shot decisions like classification
[1], [2], there has been increasing interest in developing ex-
planation generation methods for sequential decision-making
problems that are better suited for robotics tasks [3], [4].
One of the popular methods in this direction is that of
model reconciliation explanations [5], [6]. Given its focus on
modeling the user’s knowledge and by allowing for the fact
that the users might not be aware of all the details of the
task or the robotics platform, it is particularly well suited
for applications where a lay user may be working with a
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Fig. 1. Schematic representation of model updates for explanation, excuse,
and ARE processes. In explanation generation, the human model (MH ) is
updated to align more closely with the robot model (MR), ensuring the
robot plan (πR) is optimal within the updated human model. During excuse
generation, the MRis updated to ensure that the human’s plan (πH ) is
optimal. For ARE following an initial explanation that updates the MH ,
the human is also provided with additional model updates that could ensure
the optimality of πH in both models.

complex robotics platform. However, these works operate from
the assumption that the robot already has the ground truth
model of the task, and as such, the robot’s plan must be correct
and doesn’t need to be changed. This, unfortunately, overlooks
a core desirable property of explanations that have been
identified in the wider XAI literature, namely actionability [7]
(also sometimes referred to as algorithmic recourse [8]). An
actionable explanation would empower the user, if they wish,
to influence or change the system output to the one the user
expected or prefers.

Excuse generation is an orthogonal approach that looks at
how to update a planning model so as to ensure the generation
of solutions of some desired property [9], [10]. These methods
focus on providing users with information on how to update
the task/planning model (most frequently by updating the task
setting), such that solving the updated planning model is guar-
anteed to generate the desired behavior. Unfortunately, excuses
on their own do not constitute actionable explanations, as they
do not provide any information as to why the system chose
the unexpected behavior in the first place [11]. Additionally,



the current excuse literature focuses exclusively on scenarios
where the user’s belief about the robot is equivalent to the true
robot model, an assumption that is not met in many scenarios.

In summary, if users only receive model reconciliation
explanations generated by the model reconciliation framework,
they can understand why the robot’s plan is different from
what they expect. However, it does not inform them about
what needs to be done to achieve the desired behavior. On
the other hand, if the robot only provides excuses, users
would know what actions to take to get the desired outcome,
but they would not understand why the robot initially failed
to perform the desired action. In this work, we develop a
novel explanation generation method that bridges this gap
and generates explanations that help the user understand the
reasoning behind the robot’s actions and the steps required to
achieve their desired behavior.

We show how this new explanatory information, named
Actionable Reconciliation Explanations (ARE) (Section V),
combines the previous approaches’ strengths and exhibits a
unique set of properties (refer to Fig. 1). We show how
generating ARE requires us to develop a novel model-space
search algorithm [6] (Section VI). In developing this new
method, we also introduce a more general version of the ex-
cuse generation problem to the current literature. We evaluate
ARE by providing theoretical analyses of these new explana-
tions (Section V), running empirical evaluations to compare
how our new algorithm compares to previous ones (Section
VII-A), and finally running user studies to establish various
effects of the information on the user’s end, including, trust,
cognitive load, and perceived actionability (Section VII-B).
As part of these user studies, we also perform, to the best
of our knowledge, the first comparison of excuse and model
reconciliation explanations along these dimensions.

II. RELATED WORK

To start with let’s look at the current landscape of relevant
related work. A significant portion of previous research on
sequential decision-making problems has centered on provid-
ing explanations for existing plans. Typically, the inquiries in
this area revolve around understanding why a specific plan has
been chosen (”Why is this the plan?”) or why it was chosen
over alternative plans or foils [3], [11]). Some popular expla-
nation methods in this space include model reconciliation [5],
[6], causal chain explanations [12], [13], and model restrictions
[14]. Excuses, on the other hand, produce information about
how a planning model could be updated to produce plans
for certain properties. Excuses were originally introduced to
identify how an unsolvable model can be made solvable [9].
This can be compared against methods for explaining the
unsolvability of the problem [15].

Multiple works have looked at evaluating the effectiveness
of model reconciliation explanation. These include basic tests
to compare the effectiveness of different forms of model rec-
onciliation explanation and whether people naturally identify
model reconciliation explanations (cf. [16]) and what kind of
model update information are preferred by users [16]. Early

evaluations were focused on simplified robotic tasks [16],
but since then they have also been tested in decision-support
contexts [17], [18]. Excuses have also been evaluated using
user studies [10], but we are unaware of any prior work that
has compared the two.

Multiple authors have argued for the need to ensure that
explanations generated by AI systems need to be actionable
[19]. However, most of the existing works on generating
actionable explanations are focused on single-shot decision-
making settings [20]. Another related direction of work is that
of counterfactual explanations, which were primarily studied
in the context of single-shot decision-making. These expla-
nations aim to identify important features behind a decision
and how to change them to get different outcomes [21]. Thus,
these methods are both identifying the reason for the decision
and how to change it [22]. As such, these works are closely
in spirit with the kind of methods discussed in this paper.

III. BACKGROUND

Our paper will focus on goal-directed deterministic plan-
ning problems, i.e., classical planning or STRIPS [23] style
planning problems. We can represent such planning prob-
lems or equivalently models using tuples of the form M =
⟨F,A, I,G,C⟩, where M represents a planning model. In this
tuple, F is a set of propositional fluents used to define the set
of possible unique states within the model. A is the set of ac-
tions that can be executed. Each action a ∈ A is represented as
a tuple ⟨pre (a), add (a), del (a)⟩, where pre (a) ⊆ F , specifies
the preconditions for the action. An action a is available in a
state s if pre (a) ⊆ s. The sets add (a) ⊆ F and del (a) ⊆ F
represent the add and delete effects of the action, respectively.
We will use the function δM : 2F × A → 2F to represent
the transition function that captures resulting of executing an
action. As such, the result of executing an action a in a given
state s ⊆ F is represented as δM (s, a) = (s∪add (a))\del (a),
where pre (a) ⊆ s. I ⊆ F defines the initial state, and G ⊆ F
specifies the goal description. Finally, C is a cost function that
maps actions to their costs, which are real values.

The solution to this problem is a plan (sequence of ac-
tions), π = ⟨a1, a2, ..., an⟩, such that δM (I, π) ⊇ G (where
δM (I, π) = δM ((δM (I, a1), a2), ...an)). The cost of the plan
π is C(π) =

∑
ai∈π C(ai). We call a plan π optimal if no

other plan can satisfy the goal description G with less cost. We
represent such optimal plans in model M as π∗, and similarly,
the cost for the optimal plan will be C∗

M . The original work
on excuses focused on unsolvable planning problems, i.e., no
action sequence whose execution leads to the goal exists. To
capture such cases uniformly, we introduce a new action a−1,
which has empty preconditions, whose add effects contain the
goal description, and has an infinite cost. Thus, a problem is
unsolvable if its optimal plan is π−1 = ⟨a−1⟩.

We are interested in setting where the robot’s model of the
task MR = ⟨F,AR, IR, GR, CR⟩ may be different from the
human’s beliefs about the task MH = ⟨F,AH , IH , GH , CH⟩.
Keeping with the foundational settings in human-aware plan-
ning [24], we will consider a case where the robot is the



primary actor, and the human uses their beliefs to make
sense of the robot’s actions. For the sake of simplifying the
technical discourse, we will assume the two models share the
fluent space and action labels (but not necessarily the action
definitions). One of the basic problems that could arise here is
when the plan followed by the robot (πR) is not the same as the
one expected by the human (πH ). To simplify the discussion,
we will assume that the expectation mismatch arises from the
fact that the human might not think the robot plan is optimal or
even valid (per MH ) and the robot might have similar views
about the human plan1. Both model reconciliation explanations
[6] and excuses [9] provide two orthogonal ways of addressing
this same problem.

Both these methods use model space search to update either
of the two models. In particular, this model space is defined
over a space of model parameters F (F,A), which is defined
over the fluents and action labels shared between the two
models, and this model parameter set is given as where

F (F,A) = {init-has-f | f ∈ F} ∪ {goal-has-f | f ∈ F} ∪⋃
a∈A

{a-has-pos-prec-fa-has-add-f, a-has-del-f | f ∈ F}.

We will now use a parameterization function (Γ(·) ) that
will map each model to a subset of the model parameters (we
will follow the conventions set by [5])

τI = {init-has-f | f ∈ I}
τG = {goal-has-g | g ∈ G}

τpre (a) = {a-has-prec-f | f ∈ pre (a)}
τadd (a) = {a-has-add-f | f ∈ add (a)}
τdel (a) = {a-has-del-f | f ∈ del (a)}

τa = τpre (a) ∪ τadd (a) ∪ τdel (a)

τA =
⋃

a∈AM

τa

Γ(M) = τI ∪ τG ∪ τA

Similarly, we will use the function Γ−1 to map a set of
model parameters into a model, and we will represent the
set of all possible models that can be represented using the
model parameters as M(F,A). Now, under explanation model
reconciliation, the goal is to update the human model (MH ),
such that the robot plan (πR) will be optimal in the updated
model. Here, the changes made to the human model align
with the robot model; that is, the human is provided with true
information about the robot model (that may not have been
known previously). We will represent this process of updating
the human model as: M̂H = MH + E

Where M̂H is the updated human model, ‘+’ is the update
operator, and E is the model information (i.e., the explanation).
Note that the use of the ‘+’ operator is one of convenience
since the update may provide the human with information
about the robot model they previously didn’t know (as such,

1It is worth noting that most of the following discussion still holds if the
human is not performing optimal planning
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Fig. 2. Motivational Example: The robot, initially positioned at E6 within a
small room bounded by walls and two doors (unknown to the human Door
B is locked), is tasked by a human to reach the goal at A10. A continuous
wall extends from D2 to D9, forming an impassable barrier for the robot. The
corridor between E8 and E10 is dark due to the lights being turned off. The
human’s anticipated route for the robot is depicted with blue arrows (πH ),
while the robot’s actual path is indicated by green arrows (πR).

add new parameters to Γ(MH)), and possibly correct miscon-
ception they may have about the robot model (as such, remove
parameters from Γ(MH)). We will use the cost function CE

to return the non-negative cost of providing an explanation
(i.e., a piece of model information) and will refer to an
explanation set with the lowest cost as a minimally complete
explanation or MCE. Henceforth, unless specified, we use the
term explanation to refer to MCE. Now, an excuse, on the
other hand, is to update the robot model such that the solutions
generated meet certain criteria. Since we will be introducing
a more general notion of excuses, we will provide a detailed
definition of excuses in Section V.

IV. RUNNING EXAMPLE

To illustrate the distinctions between excuses, explanations,
and our method, we introduce a scenario featuring a robot
navigating a small grid world, as depicted in Fig. 2. Initially
positioned in a small room at E6, the robot is tasked by a
human to reach a specified goal at A10 via the shortest possible
route. The environment includes a wall marked by diagonal
lines extending from D2 to D9, which the robot cannot cross.
There are two exit doors: Door A at E4 and Door B at E7.
The corridor between E8 and E10 is dark due to the lights
being switched off, which the human is aware of. The optimal
plan expected by the human, denoted as πH in blue, involves
the robot exiting via Door B to directly reach the goal. The
robot, on the other hand, exits through Door A and follows
a seemingly longer path to the goal (πR denoted in green).
Here, the human is unaware of the fact that the robot can’t
open locked doors, that door B is locked, and that the robot
can’t navigate through dark corridors.

In the presence of this discrepancy, if the user were to ask,
“Why didn’t you just go through door B to reach the goal?” the
robot could respond either with an excuse or an explanation.
Explanation - I can’t open the doors that are locked and Door
B is locked
Excuse - I could have followed πH if Door B was unlocked
and the lights at cells E8, E9, and E10 is switched on.
Now, an explanation provides information as to why the robot
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Fig. 3. Illustration of the Bi-Level Search Algorithm for identifying ARE.
This process is initiated by locating a valid explanation, followed by a
subsequent search phase that seeks a valid excuse, taking into account both the
robot’s model and the human model updated with the initial valid explanation.

chose its behavior but not how to correct it, while excuses, on
the other hand, provide information on how to allow generation
of πH , but no justification for its choice of πR .

The minimal ARE for the setting would be as follows
ARE - I can’t open the doors that are locked, I can’t move in
the dark, and door B is locked. I could have followed πH if
Door B was unlocked and the lights at cells E8, E9, and E10
is switched on.
Note that ARE tries to perform functions of both explanations
and excuses; however, it contains information not contained
in either. We will provide a more detailed discussion of the
reason why ARE takes this form and how to generate them in
the following sections.

V. ACTIONABLE RECONCILIATION EXPLANATIONS

Before discussing and analyzing our newly proposed ex-
planatory information, let’s revisit the problem of excuse
generation and start with a more general definition.

Definition 1: For a target model M = ⟨F,A, I,G⟩ and
a target plan set Π, and general excuse generation prob-
lem is defined by the tuple Pζ = ⟨M,Eζ , Cζ ,Π⟩, where
Eζ ⊆ F (F,A) is the set of allowed model edits, and Cζ is
the cost associated with each model edit. A solution to an
excuse generation problem is an excuse ζ ⊆ Eζ , such that for
the updated model Mζ = M+ ζ, there exists at least a plan
π ∈ Π, that is optimal in Mζ .
The original excuse generation work [9] focused on converting
an unsolvable planning problem into a solvable one by chang-
ing the initial state. We can derive this specific instantiation
of the problem from the general problem by setting the target
plan set, to the set of all action sequences not containing a−1.
In our case, our target model is the robot model MR, the
target plan set is a singleton set containing πH , and the model
update set Eζ contains all the changes to the task and the robot
that can be viably made, and Cζ reflect the cost of making
that change. In the context of our running example, the model
edits include both changing the environment (unlocking Door
B) and upgrading the robot (adding sensors), and the identified
minimal excuse includes edits of both kinds.

Now, moving over to the problem at hand, the underlying
explanatory problem is one shared by multiple earlier works
(cf. [5], [17], [25]). In its most general form, the problem is
represented as a tuple PE = ⟨MH ,MR, CE , πR, πH⟩. Even
though these earlier works look at the same problem, they
propose generating different kinds of explanations for different
objectives. For example, works on model reconciliation [24]
have introduced both MCE for one-shot interactions and MME
for longitudinal ones. Similarly, works on explicable planning
[26] consider changing the robot plans to better align with
human expectations. We add to this growing body of literature
by considering a novel explanation form that becomes more
appropriate when we relax a core assumption shared by all
these previous works, namely that the robot model is not
changeable. In particular, the explanatory information gener-
ated under this new method consists of two sets of information:
a) a set of information about the robot model that is aimed at
explaining why the robot chose πR, b) a set of model updates
that if performed could allow the robot to follow πH instead.
Thus, the explanation here includes the reason for the system’s
choice (πR) and a set of actionable recourse the user could
potentially follow to generate the behavior they expected (πH ).
We will again leverage the notion of model edits to define
such explanations. Specifically, we formalize the notion of
Actionable Reconciliation Explanations (ARE) as follows:

Definition 2: For an actionable explanation problem P =
⟨MH ,MR,Eζ , CE , Cζ , πR, πH⟩, the ARE is given as a tuple
Ξ = ⟨E , ζ⟩, such that it meets the following conditions:

C1 ζ ⊆ E
C2 πR is optimal in the model MH + E
C3 πH is optimal in both the models MH+E+ζ and MR+ζ

Under this definition, E corresponds to the explanation compo-
nent and ζ to the excuse (C1 merely states that the excuse can
only include valid model updates). Condition C2 requires that
E helps ensure the optimality of the robot plan in the updated
human model, and condition C3 requires that the application
of excuse ensures the optimality of the human plan in both the
robot model and the updated human model you obtain after
incorporating the explanation.

Our natural next step would be to attribute a notion of
minimality to ARE. A natural option would be to minimize
Cζ(ζ) + CE(E). However, revisiting the motivational example
shows how this could be an issue. Note how the minimal ARE
provided includes more information than a simple union of
the explanation and excuse information. If we were to simply
return the union of the two, the user would understand why
the robot would want to unlock Door B, but not why the lights
need to be switched on. For the second piece of information, it
needs to know that the robot can’t go through dark rooms. In
this example, a naive approach to simply minimizing the total
information provided could lead to the human thinking that the
excuse includes more information than is required. So, instead,
we will use a multi-tiered notion of minimality. In particular,
for a given ARE, we are looking for the cheapest explanation,
for which we can generate an excuse that is perceived as



minimal by the human. Note that this definition centers on
human perception. As they do not know the robot model, it is
very hard for humans to judge what a minimal explanation is.
However, as in the example, once an explanation is given, the
human can try to estimate if the excuse includes superfluous
information. To formally capture this notion, we will start by
defining a minimal excuse for an explanation.

Definition 3: For a given problem P , a set ζ ⊆ E is said
to be minimal for E , if ⟨E , ζ⟩ is a valid ARE for P and there
exists no other excuse ζ ′ ⊆ E, such that πH is optimal for
MH + ζ ′ and Cζ(ζ ′) < Cζ(ζ).
A minimal ARE is one with a minimal explanation for which
a minimal excuse is possible, or more formally

Definition 4: For a given problem P , an ARE Ξ = ⟨E , ζ⟩
is considered minimal if ζ is minimal for E and there exists
no Ξ′ = ⟨E ′, ζ ′⟩, such that CE(E ′) < CE(E) and ζ ′ is minimal
for E ′.

Now, with the definitions in place, we can see some basic
properties of ARE

Proposition 1: For a given problem P , there might not exist
a valid ARE.
This result is in stark contrast with the model reconciliation
explanation, where one could always show one exists. Here,
this property primarily arises from the requirements for a valid
excuse, and one can show this fact holds trivially when E is
empty (i.e., the robot model cannot be updated in line with
the original assumption of the model reconciliation work).

Returning to a property that was earlier hinted at in the
example, the total cost of a minimal ARE might be higher
than the total cost of a minimal explanation and excuse.

Proposition 2: For a given problem P , let Ξ = ⟨E , ζ⟩ be a
minimal ARE, now let E∗ be the MCE for PE , and ζ∗ be the
minimal excuse for Pζ , then

Cζ(ζ) + CE(E) ≥ Cζ(ζ∗) + CE(E∗)

The proof of this proposition can be established rather directly.
Firstly, we can see from Definitions 2 and 4 that the excuse and
explanation components of any ARE are valid explanations
and excuses. Since CE(E∗) and Cζ(ζ∗) are lower bounds on ex-
planations and excuses, their sum must also be a lower bound
of the total ARE cost. This establishes the ≥ relationship. We
can see that it’s neither always equal nor greater in the general
case through construction. The running example already shows
a case where the cost ARE is higher, and in the evaluation,
we will see cases where they are equal. This eliminates any
chances of establishing a more precise relationship without
further constraining the problem.

VI. GENERATING ARE

To generate ARE, we will be using a bi-level search (refer to
Fig. 3), termed ARE-search. The outer-search will be similar
to the explanation generation process described for generating
MCE (cf. [6]). In the traditional MCE, the goal check merely
checks whether the identified model updates constitute a
valid model reconciliation explanation (with guarantees of
minimality provided by the choice of the search). Now, in our

Algorithm 1 Algorithm of the excuse generation pseudo-code
procedure that is called by the outer model-space search when it
identifies a valid explanation.
1: procedure MINIMAL EXCUSE SEARCH

2: Input: MR,M̂H ,E, πH , Cζ , where M̂H =MH + E
3: Output: Excuse set ζ and min excuse found flag

4: fringe ← Priority_Queue()
5: min excuse found ← False
6: ζ̂ ← {}
7: fringe.push(ζ̂, priority = 0)
8: min excuse cost ←∞
9: while fringe is not empty do

10: ζ̂ ← fringe.pop()

11: if Cζ(ζ̂) ≤ min excuse cost then
12: if πH is optimal in M̂H + ζ̂ then
13: min excuse cost ← Cζ(ζ̂)
14: if πH is optimal in MR + ζ̂ then
15: min excuse found ← True
16: return ζ̂, min excuse found

17: for ∀e ∈ E \ ζ̂ do
18: ζ̂ ← ζ̂ ∪ {e}
19: fringe.push(ζ̂, Cζ(ζ̂) + hζ(ζ̂))

20: return ζ̂, min excuse found

case, we will run an additional goal check when this condition
is met. In particular, we check if a valid minimal excuse exists
for the corresponding explanation E .

The algorithm for finding such an excuse is sketched in
Algorithm VI. It takes as input the updated human model
(obtained by applying an explanation of the human model),
the original robot model, the allowed edits, the human plan,
and the cost function. The algorithm internally makes use
of a modified A* search [27] with an admissible heuristic
(hζ). It searches over the space of excuses (corresponding to
subsets of E). It will only test an excuse if its cost is lower
than or equal to the previously found min excuse cost. This
min excuse cost is initially set to infinity (or more practically
to a large value). The min excuse cost variable gets set to a
specific value as soon as you find an excuse that makes the
plan optimal in the human model. If the same excuse makes it
optimal in the robot model, then it’s returned as the required
minimal excuse, else it continues searching. The successors
for each expanded excuses involves new excuse set formed by
adding previously missing model edits from E, and the node
value is set as the sum of it’s cost and heuristic value (as per
the conventions of A* search).

VII. EVALUATION

A. Experiments on IPC Domains

First, we determine our proposed algorithm’s computa-
tional characteristics, particularly the time taken on standard
planning benchmarks, and compare them against the original
model reconciliation explanation (referred to henceforth as
simply explanation) and excuse generation methods2. The time
taken is an interesting metric of comparison because we are

2All code and data for the experiments can be found in
https://github.com/cglrtrgy/ActionableExplanations



TABLE I
COMPARISON OF PERFORMANCE METRICS ACROSS THREE APPROACHES: EXCUSE, EXPLANATION, AND ARE. FOR EACH DOMAIN, METRICS ARE

AVERAGED ACROSS 5 PROBLEM INSTANCES, WITH STANDARD DEVIATIONS PROVIDED. |πR| AND |πH | REPRESENT THE AVERAGE LENGTHS OF ROBOT
AND HUMAN PLANS, RESPECTIVELY. |ζ|, |E|, AND |ζ + E| DENOTE THE LENGTHS OF THE EXCUSE, EXPLANATION, AND ARE. THE ’TIME(S)’ COLUMN

INDICATES THE COMPUTATION TIME (IN SECONDS).

Domains |πR| |πH | Excuse Explanation ARE
|ζ| Time(s) |E| Time(s) |ζ + E| Time(s)

Logistics 31.0 ± 11.0 15 ± 4.5 2.8 ± 1.3 5.2 ± 5.7 2.0 ± 0.0 22.1 ± 46.4 4.8 ± 1.3 16.2 ± 16.7
Depots 19.0 ± 7.6 8.2 ± 3.6 3.6 ± 1.3 4.5 ± 5.3 3.8 ± 0.4 137 ± 249.1 7.4 ± 1.5 153 ± 264.7
Freecell 12.0 ± 5.6 5.0 ± 1.6 2.6 ± 1.9 16.4 ± 34.4 2.8 ± 0.4 18.6 ± 19.3 5.4 ± 2.2 45.6 ± 72.4
Rovers 13.0 ± 5.5 7.8 ± 3.1 2.6 ± 0.9 6.6 ± 11.5 2.0 ± 0.0 1.4 ± 2.0 4.6 ± 0.9 8.1 ± 12.7
Satellite 16.2 ± 2.4 14.2 ± 2.2 2.6 ± 1.1 9.2 ± 13.7 1.8 ± 0.8 11.9 ± 17.3 4.4 ± 1.8 27.7 ± 32.6

TABLE II
THIS TABLE FOCUSES ON PROBLEM INSTANCES WHERE THE LENGTH OF ARE IS GUARANTEED TO BE GREATER THAN THE TOTAL LENGTH OF EXCUSE

AND EXPLANATION WHEN COMPUTED INDIVIDUALLY. SEE TABLE I FOR A DETAILED DESCRIPTION OF THE METRICS.

Domains |πR| |πH | Excuse Explanation ARE
|ζ| Time(s) |E| Time(s) |ζ + E| Time(s)

Blocks 12.0 ± 2.4 8.8 ± 1.1 2.8 ± 0.8 2.9 ± 3.8 1.0 ± 0.0 0.3 ± 0.0 4.6 ± 1.1 5.2 ± 3.0
Zenotravel 13.6 ± 3.2 12.0 ± 3.1 2.0 ± 0.0 1.7 ± 1.8 1.0 ± 0.0 13.5 ± 15.2 4.0 ± 0.0 24.8 ± 26.7
Logistics 31.0 ± 11.0 13.0 ± 5.4 2.4 ± 0.9 3.4 ± 6.5 2.0 ± 0.0 21.9 ± 42.4 5.2 ± 0.4 38.8 ± 37.5

introducing a new class of more complex search algorithms
(given the multi-level structure) than the ones previously
considered in the literature.

a) Setting : For the experiments, we will assign uniform
unit costs for all model updates (both for explanations and
excuse model edits) and use a blind heuristic for all model-
space searches. We considered two settings, one where we
tested on the original benchmark domains and then a set
where we know that the cost of ARE will be higher than
the total cost for explanation and excuses. For the first set,
the robot model consisted of the original IPC domains and
instances, and the human model was generated by randomly
deleting some static predicates from the original domain. The
allowed model updates for excuses includes adding a subset of
predicates to the initial state. We considered five domains, and
for each domain, we considered five instances of increasing
size (25 total problems).

We also evaluated our approach on problems where ARE
is guaranteed to be longer than individual excuses or explana-
tions. As such, we expect the search effort to be significantly
higher in these problems. To create such problem instances, we
updated each domain by adding a duplicate set of actions that
allows for shorter plans by removing some of the preconditions
in the human model. As such, to explain away the use of these
actions, the system only needs to point to one precondition
in one of these actions. However, to ensure the optimality
of human plans that use these actions, a minimal ARE will
involve explanations that include all relevant preconditions.
The human models were generated as before, and the model
updates for excuses were again similar to the last setting. For
this setting, we considered three domains and five instances
each (15 total problems). All evaluations were performed on
a computer with 16GB RAM and an Apple M1 3.2GHz CPU.

b) Results: Tables I and II present the time taken and
solution size for the three methods, i.e., excuses, explanations,
and ARE. Since all costs are unit costs, we report costs simply

as the size. Table I focuses on the first setting where ARE
could simply be a union of the explanation and excuse. The
primary thing to note here is the fact that even though the
algorithm for ARE is more complex than a simple model
search involved in excuse and explanation generation, the time
taken by ARE is comparable to the sum of time taken for
excuse and explanation. This is even true in Table II, where
we are explicitly considering problems where the solution size
for ARE is larger than the sum of excuse and explanation in
isolation. Please note that the reason for the large standard
deviations is that we are summarizing results across planning
instances of different sizes. Refer to Appendix E to see the
results for each domain-problem instance pair.

B. Human Subject Experiments

Next, using a between-subjects study, we compared our
method against just excuses and model reconciliation explana-
tions. Each participant was randomly assigned to one of three
conditions: Excuse only (EXC), Explanation only (EXP), or
Our Method: ARE. The experiment followed IRB approved
protocols, and an overview of the study setup and the robot
behavior can be seen in the attached video3.

a) Study design and task: Within each condition, par-
ticipants were presented with two scenarios involving a robot
assigned to perform a task. The sequence of these scenarios
was randomized per participant. The participants were briefed
on the robot task, and then they watched a recorded video of
the robot performing the task (for example, Fig. 4), where they
saw the robot performing a seemingly suboptimal plan. Fol-
lowing each task, a question is raised about its behavior, and
the robot responds according to the condition (EXC, EXP, or
ARE). Details of the users’ questions and the robot’s responses
are provided in Fig. 5. One of the tasks produces an ARE
that is the union of explanation and excuses (Task 1 in Fig. 5)

3Video link: https://youtu.be/JpPO0RVHtkg



TABLE III
POST-HOC TEST RESULTS FOR THE DEPENDENT VARIABLES CLARITY AND ACTIONABILITY, THE ONLY VARIABLES FOR WHICH ANOVA SHOWED

SIGNIFICANT DIFFERENCES. * DENOTES SIGNIFICANT COMPARISONS WHERE ptukey < 0.05, BASED ON TUKEY’S POST-HOC CORRECTION.

DV Comparison Mean Difference SE t ptukey

Clarity
ARE - Excuse-only 0.218 0.062 3.534 0.002*

ARE - Explanation-only 0.140 0.061 2.310 0.057
Excuse-only - Explanation-only -0.078 0.061 -1.272 0.413

Actionability
ARE - Excuse-only 0.179 0.059 3.025 0.008*

ARE - Explanation-only 0.317 0.058 5.455 <.001*
Excuse-only - Explanation-only 0.138 0.059 2.358 0.051

Fig. 4. Images captured from an actual robot in two different task scenarios.
Top images illustrate the first task, where the robot groups blocks by color
on opposite table sides using minimal steps. The top left image displays the
initial setup, while the top right shows the post-task arrangement, highlighting
that the robot’s plan of swapping two red blocks (1 and 2) on the left with
two green blocks (5 and 6) on the right is seemingly sub-optimal (instead
of swapping the one green block three on the left with red block four on
the right). The bottom image presents the initial setup of an unsolvable task,
where the robot was to stack a clear block on top of the purple blocks.

and in the other it contains more information (Task 2 in Fig.
5). Participants then evaluated the robot’s response in terms
of satisfaction, clarity, and their perceived ability to make
the robot behave the way they wanted (actionability). After
completing both tasks, participants responded to questions
regarding their trust in the robot and their perceived workload.
The survey concluded with demographic questions.

b) Participants and recruitment: We recruited 93 par-
ticipants through the Prolific [28]. We excluded data from
three participants who failed an attention check. The analysis
proceeded with the following number of participants: 29 in
the ’EXC’ condition, 31 in the ’EXP’ condition, and 30 in the
ARE condition.

On average, participants completed the survey in eight
minutes and were compensated $3.50 for their participation.
In our study, 54% of participants identified as men, 41%
as women, and 4% as non-binary. The largest age group,
comprising 41% of participants, was between 25-34 years old.
Regarding education, 5% of participants held a college degree
or higher, 33% had a high school diploma or its equivalent, and
16% had obtained a graduate degree. Within the participant
pool, 14% had a degree in Computer Science.

c) Dependent variables: We evaluated participants in
three conditions across two tasks. We were particularly in-
terested in analyzing the following dependent variables (DV):

Task 1 User’s Question: Why did you choose not to swap the green block
on the left side (block 3) with the red block on the right side (block 4)?
Task 1 Robot’s Responses:

• EXC: If the red block 4 was lighter, I could have swapped the green
block on the left side (block 3) with the red block on the right side
(block 4).

• EXP: Red block 4 is heavy. I cannot pick up heavy objects.
• ARE: I cannot pick up the heavy blocks. Red block 4 is heavy. If

red block 4 was lighter, I could have performed only one swap.

Task 2 User’s Question: Why can’t you solve this task?
Task 2 Robot’s Responses:

• EXC: If the clear block was on the purple divider, I could have
performed the task.

• EXP: I cannot perform the task because I cannot pick up the clear
block from the table.

• ARE: I cannot perform the task because I cannot pick up the clear
block from the table. I can pick up clear blocks that are placed on
the purple divider. If the clear block was on the purple divider, I
could have performed the task.

Fig. 5. User questions and robot responses
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Fig. 6. Box Plots of Conditions by Dependent Variables. ‘X’ represents the
mean and the line represents median.

• Satisfaction: This measures how satisfied participants
were with the robot’s response to the tasks they were
given.

• Clarity: This assesses how clear the participants found
the robot’s responses.

• Actionability: This assesses participants’ understanding of
how to make the robot perform the tasks in the way they
wanted.

• Trust: The trust the user placed on the robot, as measured
through Muir questionnaire [29].

• Workload: The workload, especially cognitive load, im-
posed by each condition, as measured by NASA TLX
questionnaire [30].



d) Hypotheses: For the human subject experiments, the
following hypotheses were tested:

• H1 ARE condition will result in higher satisfaction
compared to the EXC and EXP conditions.

• H2 ARE condition will result in higher clarity compared
to the EXC and EXP conditions.

• H3 ARE condition will result in higher perceived action-
ability compared to the EXC and EXP conditions.

• H4 ARE condition will result in higher trust compared
to the EXC and EXP conditions.

• H5 No significant difference in workload is expected
between ARE and EXC or EXP conditions.

e) Results: A one-way ANOVA was performed to com-
pare the effect of the robot’s response according to the
condition (EXC, EXP, or ARE) on each DV. We present the
results in relation to each hypothesis, incorporating the mean
and standard deviation (SD) values for further insight.
H1: While ANOVA did not show a significant difference
in satisfaction scores between conditions (F (2, 177) =
2.053, p = 0.131, ω2 = 0.012), the mean satisfaction score
was highest in the ARE condition (M = 0.414, SD = 0.362)
compared to the EXC (M = 0.302, SD = 0.330) and EXP
(M = 0.312, SD = 0.311) conditions. This trend aligns with
H1 but does not reach statistical significance. H2: ANOVA
revealed a significant difference in clarity scores between
conditions (F (2, 177) = 6.441, p = 0.002, ω2 = 0.057).
Post hoc Tukey’s test indicated that the ARE condition
(M = 0.678, SD = 0.339) resulted in higher clarity scores
with statistically significant p value compared to the EXC
condition (M = 0.460, SD = 0.342, p = 0.002). However,
the difference between the ARE and EXP conditions did
not reach statistical significance (p = 0.057). Additionally,
the ARE condition had the highest clarity score among all
conditions, followed by EXP (M = 0.538, SD = 0.324).
These results partially support H2. H3: The ARE condition
led to statistically significant higher actionability scores (M =
0.653, SD = 0.325) compared to both the EXC condition
(M = 0.474, SD = 0.336, p = 0.008) and the EXP condition
(M = 0.336, SD = 0.301, p < 0.001), supporting H3. H4:
For trust, ANOVA did not show a significant difference be-
tween conditions (F (2, 87) = 0.544, p = 0.583, ω2 = 0.000).
While the ARE condition (M = 0.271, SD = 0.212) had the
highest trust scores compared to EXC (M = 0.270, SD =
0.236) and EXP (M = 0.220, SD = 0.201), the differences
were not statistically significant. H5: ANOVA results showed
no significant difference in workload scores between condi-
tions (F (2, 87) = 1.501, p = 0.229, ω2 = 0.011), supporting
H5. Table III presents the results of all pairwise comparisons
performed as part of Tukey’s HSD test for DVs that showed
significant differences in the ANOVA analysis. Descriptive
statistics for all DVs across different conditions are displayed
in box plots in Fig. 6 and Table VI in Appendix C.

f) Discussion: ANOVA and post-hoc test results revealed
that the actionability score for ARE was higher with statisti-
cally significant p values than for both EXC and EXP condi-

tions. Additionally, we saw that the clarity score for the ARE
condition was higher, with a statistically significant p-value,
than that for the EXC condition. These results align with our
primary hypothesis regarding the utility of ARE. Specifically,
it provides users with clear information that not only helps
them understand the rationale behind the robot’s behavior
but also informs them about the necessary changes required
to elicit the expected behavior from the robot. These results
suggest that ARE is, in fact, improving the ”actionability” of
the model reconciliation explanation while not reducing its
explanatory power. It is also interesting to note that the users
in fact found ARE to be more actionable than ‘EXC’. This
might point to the fact that while the ‘EXC’ condition may
list the required changes, a lack of rationale about why these
changes are needed may leave the user confused. As such,
reducing the user’s ability to utilize this information correctly.

Interestingly, ANOVA did not reveal significant differences
in satisfaction, trust, or workload scores across the conditions.
One possible explanation for the lack of variance in satis-
faction is that users’ perceptions of robots would influence
their expectations and, in turn, how satisfied they are with
the robot. Since our study focused on a block placement
task, participants may have perceived the robot as performing
adequately, regardless of the explanation provided. In terms of
workload, it is worth noting that the users observed the same
robot performing the same tasks across all three conditions.
The only difference across conditions was the explanatory
information provided. In each case, the user is expected to look
at the same behavior, try to make sense of it, and then evaluate
the explanation. This cross-condition similarity of what the
user needs to do, combined with the relatively simple nature
of the explanations involved, might explain the similarity in
workload. Finally, in the case of trust, it is well established
that user trust is directly related to their willingness to take
risks and to be vulnerable when using the AI system [31]. As
such, the similarity of the robot behavior and a lack of any
significant risk on the user’s end from using the robot could
also explain the similarity in perceived trust.

VIII. CONCLUSION

This paper introduces a novel form of model reconciliation
that not only explains why the system chose a behavior but
also how the user could potentially change it. In doing so,
we not only model reconciliation explanations actionable but
also combine them with the existing methods of ‘excuse’
generation. This new form of explanation is validated through
user studies, which shows its advantages over explanations and
excuses. In the study, we also perform a comparison between
excuses and explanations, marking a first in this field of
research. Additionally, we apply our approach to IPC domains
to study the computational characteristics of our proposed
algorithm for generating ARE. Future work will involve con-
ducting semi-structured interviews with users to delve deeper
into the factors they consider to assess excuses, explanations,
and ARE’s, thereby further enriching our understanding of
these methods.
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APPENDIX A
USER STUDY QUESTIONS

In Table IV, we provide the specific questions and statements used to assess participant responses across various metrics in
our user study. This table categorizes the survey items under the dependent variables they are intended to measure, including
Trust, Workload, Satisfaction, Clarity, and Actionability. Each item is accompanied by a corresponding 7-point Likert scale.

TABLE IV
OVERVIEW OF QUESTIONS AND STATEMENTS ASSOCIATED WITH EACH DEPENDENT VARIABLE.

Dependent Variables User Study Questions/Statements 7-point Scale
Satisfaction I am satisfied with the answer to my question provided by the robot. 1-Low, 7-High

Clarity I found the robot’s answer regarding its behavior to be clear. 1-Low, 7-High
Actionability I understand how to make this robot perform this task in the way I wanted. 1-Low, 7-High

Trust

To what extent can the robot’s behavior be predicted from moment to moment? 1-Low, 7-High
To what extent can you count on the robot to do its job? 1-Low, 7-High
What degree of faith do you have that the robot will be able to cope with similar situations in the future? 1-Low, 7-High
Overall, how much do you trust the robot? 1-Low, 7-High

Workload

How much mental and perceptual activity was required? Was the task easy or demanding, simple or
complex, exacting or forgiving?

1-Low, 7-High

How much physical activity was required? Was the task easy or demanding, slow or brisk, slack or
strenuous, restful or laborious?

1-Low, 7-High

How much time pressure did you feel due to the pace at which tasks occurred? Was the pace slow and
leisurely or rapid and frantic?

1-Low, 7-High

How successful were you in accomplishing the goals of the task? How satisfied were you with your
performance?

1-Good, 7-Poor

How hard did you have to work to accomplish your level of performance? 1-Low, 7-High
How did you feel during the task? 1-Low, 7-High



APPENDIX B
DEMOGRAPHICS BY CONDITIONS

Table V presents detailed breakdown of the demographic distribution of participants according to the response condition
they were assigned to: Excuse-only, Explanation-only, and ARE. Each condition column, denoted by ’n=’, represents the
total number of participants in that specific group, providing a basis for the subsequent percentage calculations within each
demographic category. These categories encompass Gender, Age, Education of participants, and whether participants have
Computer Science (CS) Background or not, with their respective percentages summing up to 100% for each condition. The
’Overall’ column, marked as ’N=90’, aggregates the data across all conditions, offering a comprehensive view of the entire
study’s demographic landscape.

TABLE V
PARTICIPANT DEMOGRAPHIC DISTRIBUTION BY CONDITIONS

Demographics Categories Excuse (n=29) Explanation (n=31) ARE (n=30) Overall (N=90)

Gender
Woman 27.59% 48.39% 46.67% 41.11%
Man 65.52% 48.39% 50% 54.44%
Non-binary 6.90% 3.23% 3.33% 4.44%

Age

18 -24 13.79% 16.13% 16.67% 15.56%
25 -34 41.38% 41.94% 40% 41.11%
35 - 44 17.24% 25.81% 10% 17.78%
45 - 54 13.79% 9.68% 23.33% 15.56%
55 - 64 10.34% 6.45% 10% 8.89%
65+ 3.45% 0% 0% 1.11%

Education
High school 34.48% 32.26% 33.33% 33.33%
College 51.72% 48.39% 53.33% 51.11%
Graduate 13.79% 19.35% 13.33% 15.56%

CS Background No 82.76% 90.32% 83.33% 85.56%
Yes 17.24% 9.68% 16.67% 14.44%



APPENDIX C
DESCRIPTIVE STATISTICS FOR DEPENDENT VARIABLES BY CONDITIONS

In Table VI, we present the mean and standard deviation (SD) values for various dependent variables under three different
conditions: Excuse-only, Explanation-only, and ARE.

TABLE VI
MEAN AND STD FOR DEPENDENT VARIABLES BY CONDITIONS

Dependent Variable Excuse Explanation ARE
Satisfaction 0.302 ± 0.330 0.312 ± 0.311 0.414 ± 0.362
Clarity 0.460 ± 0.342 0.538 ± 0.324 0.678 ± 0.339
Actionability 0.474 ± 0.336 0.336 ± 0.301 0.653 ± 0.325
Trust 0.270 ± 0.236 0.220 ± 0.201 0.271 ± 0.212
Workload 0.321 ± 0.109 0.272 ± 0.107 0.288 ± 0.118



APPENDIX D
TWO-TAILED T-TEST AND TWO ONE-SIDED T-TESTS (TOST) RESULTS

In Table VII, we present detailed statistical analyses to assess the equivalence of trust and workload across conditions.

TABLE VII
STATISTICAL ANALYSES INCLUDING THE TWO-TAILED T-TEST RESULTS (DISPLAYED IN THE ’STATISTIC’ COLUMN UNDER ’T-TEST’) AND THE TWO

ONE-SIDED T-TESTS (TOST) RESULTS (PRESENTED IN THE ’STATISTIC’ COLUMN, UNDER ’UPPER BOUND’ AND ’LOWER BOUND’ SECTIONS).
P-VALUES MARKED WITH ”*” DENOTE SIGNIFICANCE AT p < 0.05

Dependent Variable Statistic Excuse vs Explanation Excuse vs Action Excuse vs Explanation
t df p t df p t df p

Trust
T-Test 0.880 58 0.382 0.012 57 0.990 0.953 59 0.345

Upper bound 1.074 58 0.144 0.204 57 0.419 1.148 59 0.128
Lower bound 0.686 58 0.752 -0.180 57 0.429 0.758 59 0.774

Workload
T-Test 1.761 58 0.083 -1.109 57 0.272 0.563 59 0.576

Upper bound 1.955 58 0.028* -0.917 57 0.819 0.758 59 0.226
Lower bound 1.568 58 0.939 -1.301 57 0.099 0.367 59 0.643



APPENDIX E
PRE-AGGREGATION RESULTS FOR DOMAIN-PROBLEM INSTANCE PAIRS

Table VIII and Table IX provide detailed breakdowns of the aggregated results presented in Table I and Table II, respectively.

TABLE VIII
COMPARISON OF PERFORMANCE METRICS ACROSS THREE APPROACHES: EXCUSE, EXPLANATION, AND ARE. FOR EACH DOMAIN AND PROBLEM

INSTANCE PAIRS. |πR| AND |πH | REPRESENT THE AVERAGE LENGTHS OF ROBOT AND HUMAN PLANS, RESPECTIVELY. |ζ|, |E|, AND |ζ + E| DENOTE THE
LENGTHS OF THE EXCUSE, EXPLANATION, AND ARE. THE ’TIME(S)’ COLUMN INDICATES THE COMPUTATION TIME (IN SECONDS). SUMMARIZED DATA

CAN BE FOUND IN TABLE I

Domains Problem |πR| |πH | Excuse Explanation ARE
|ζ| Time(s) |E| Time(s) |ζ + E| Time(s)

Logistics p1 20 10 1 0.14 2 0.46 3 0.99
Logistics p2 19 11 2 0.19 2 0.48 4 1.02
Logistics p3 36 17 4 11.83 2 1.62 6 27.66
Logistics p4 36 16 3 3.11 2 2.74 5 12.41
Logistics p5 44 21 4 10.6 2 105.1 6 38.85
Depots p1 10 4 2 2.71 4 3.60 6 4.71
Depots p2 15 6 3 0.69 4 4.32 7 5.34
Depots p3 27 12 5 2.47 4 96.94 9 110.42
Depots p4 16 7 3 13.78 3 3.52 6 24.67
Depots p5 27 12 5 2.68 4 576.68 9 620.11
Freecell p1 8 5 1 0.24 2 3.33 3 3.04
Freecell p2 14 6 2 1.72 3 26.04 5 34.13
Freecell p3 8 4 2 1.02 3 7.08 5 8.73
Freecell p4 21 7 6 78.01 3 49.2 9 173.37
Freecell p5 9 3 2 1.09 3 7.12 5 8.87
Rovers p1 10 5 2 0.55 2 0.49 4 1.47
Rovers p2 14 8 3 3.52 2 0.52 5 4.53
Rovers p3 11 7 2 0.51 2 0.49 4 1.18
Rovers p4 8 6 2 1.34 2 0.47 4 2.55
Rovers p5 22 13 4 27.1 2 5.06 6 30.73
Satellite p1 17 16 1 0.16 1 0.54 2 1.27
Satellite p2 15 13 2 1.06 2 2.48 4 5.98
Satellite p3 20 17 4 7.40 3 41.31 7 62.1
Satellite p4 15 12 3 33.14 2 13.71 5 64.53
Satellite p5 14 13 3 4.23 1 1.49 4 4.67

TABLE IX
COMPARISON OF PERFORMANCE METRICS ACROSS THREE APPROACHES: EXCUSE, EXPLANATION, AND ARE. |πR| AND |πH | REPRESENT THE AVERAGE

LENGTHS OF ROBOT AND HUMAN PLANS, RESPECTIVELY. |ζ|, |E|, AND |ζ + E| DENOTE THE LENGTHS OF THE EXCUSE, EXPLANATION, AND ARE.
PLEASE NOTE THAT THE LENGTH OF ARE IS GREATER THAN THE TOTAL LENGTH OF EXCUSE AND EXPLANATION WHEN COMPUTED INDIVIDUALLY.

THE ’TIME(S)’ COLUMN INDICATES THE COMPUTATION TIME (IN SECONDS). SUMMARIZED DATA CAN BE FOUND IN TABLE II

Domains Problem |πR| |πH | Excuse Explanation ARE
|ζ| Time(s) |E| Time(s) |ζ + E| Time(s)

Blocks p1 10 8 2 0.89 1 0.35 4 4.00
Blocks p2 16 10 4 10.22 1 0.36 6 9.55
Blocks p3 12 10 3 1.70 1 0.35 5 5.00
Blocks p4 10 8 2 0.27 1 0.33 3 1.38
Blocks p5 12 8 3 1.56 1 0.34 5 6.27
Zenotravel p1 11 9 2 0.20 1 0.29 4 2.02
Zenotravel p2 14 12 2 1.20 1 7.18 4 14.39
Zenotravel p3 10 9 2 0.19 1 0.29 4 1.94
Zenotravel p4 15 14 2 2.69 1 32.08 4 44.76
Zenotravel p5 18 16 2 4.34 1 27.43 4 60.78
Logistics p1 20 8 2 0.40 2 0.93 5 8.79
Logistics p2 19 8 2 0.47 2 0.88 5 8.59
Logistics p3 36 14 2 0.72 2 3.06 5 39.72
Logistics p4 36 14 2 0.48 2 7.05 5 100.39
Logistics p5 44 21 4 15.12 2 97.64 6 36.47



APPENDIX F
LIMITATION

Like all research, our study is subject to certain limitations. One of them lies in our capacity to interpret the findings. Despite
our concerted efforts to engage in thorough discussions among co-authors and to draw insights from related studies in the
field, the complexity of data interpretation remains a challenge.

Additionally, while we endeavored to include a broad spectrum of participants, achieving a perfectly representative sample
is inherently difficult. There remains the possibility that not all participant groups were adequately represented in our study.
Consequently, we advocate for future research to prioritize inclusivity and diversity among participant groups to enhance the
generalizability of findings.

Our investigation was also confined to a limited selection of IPC domains, which may not encompass the full range of potential
applications. Expanding the scope to include a wider variety of domains could provide a more comprehensive evaluation of
the phenomena under study.

In our human subject experiments, we did not ask users to make the changes required to achieve the expected plans.
Instead, we used a metric to assess the perceived actionability of our method. We did not require a separate test to measure
actual actionability since our algorithm guarantees the soundness of the excuses generated. We also did not include additional
experiments for explainability metrics, such as simulability, as the utility of model reconciliation as an explanation framework
has been extensively studied (cf. [16]). However, future studies could explore the metrics like simulability and the ability of
the users to carry out the changes recommended by the method.

Lastly, the nature of our study does not allow for the assessment of long-term implications associated with the types of
information we examined. To gain a deeper understanding of the enduring effects, conducting longitudinal studies in real-
world settings would be invaluable. Such research could offer significant insights into how these information types influence
interactions and perceptions over extended periods.


