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Abstract. In recent years, deep learning (DL) models have surpassed
human experts in a variety of tasks. However, when it comes to educa-
tional contexts, human experts possess something these high-performing
models currently lack—the ability to provide clear and approachable
explanations tailored to human learners. Efforts to develop explainable
methods for these models have typically been designed for DL-experts
rather than learners. In this study, we propose a novel approach that
combines high-performance models with the teachability of human ex-
pert explanations. Specifically, we focus on generating post-hoc, human-
understandable explanations for key expert-defined concepts on a novel
task: training citizen scientists to identify pollinators from images. Our
method, HuTCH, transforms the representational space and highlights
relevant segments of an image for learners based on essential concepts —
for example, automatically highlighting hair in an image as a key concept
for bee identification. We evaluate HuTCH’s performance by compar-
ing against traditional saliency maps and expert annotations, and show
that HuTCH concepts better align with expert annotations. The pro-
posed framework bridges the gap between models’ accuracy and human-
teachable features, contributing to the advancement of explainable AI
for use in pedagogy.

Keywords: Explainable AI · Concept-Based Teaching · Concept High-
lighting · Feature Localization.

1 Introduction

In recent years, deep learning has made rapid advances. We currently have deep
learning systems that can match or even surpass human-level performance in
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many tasks. Concurrently, there have been various efforts within the Explain-
able AI (XAI) field to generate explanations for why the system made specific
decisions [5, 9, 15]. Unfortunately, these systems still do not provide a source of
lessons for teaching non-expert learners about the target task. This is in no small
part because most existing explanations are designed to help AI or domain ex-
perts debug and verify these systems. Nonetheless, if we are able to capitalize on
these models to generate easy-to-understand lessons about tasks these systems
excel at, this could open novel opportunities to automatically generate lessons
for many learning problems. Towards this end, assuming access to domain ex-
perts, we develop an entirely new XAI paradigm that combines expert-specified
rules with internal representations used by AI systems to automatically generate
task-specific lesson content.

Here, we explicitly focus on a visual learning task, namely identifying different
pollinator groups from their pictures. Convolutional Neural Networks (CNNs)
can be trained to solve this task with a near-expert level accuracy. We intro-
duce a novel method called HuTCH, which extends existing XAI methods, to
generate lessons as to why the current image belongs to a specific group, which
could be easily followed by learners with no familiarity with AI concepts or ex-
pertise in entomology. Specifically, HuTCH leverages concepts and rules used
by domain experts to provide a conceptual explanation as to why the insect in
the picture corresponds to a specific pollinator group. HuTCH will make use
of internal representations learned by the CNN to determine what rules and
concepts are applicable for the given image. We then make it further accessible
to non-domain experts by illustrating visually each concept used in the rule to
make the determination.

2 Related Work

Feature-attribution methods, for instance, gradient-based methods, have been
popular in generating explanations for vision models [9]. Saliency maps are one
example of such methods [20]. Other methods like LIME [18] and Shapley Addi-
tive Explanations (SHAP) [15] have been introduced to generate explanations.
Even though many methods besides LIME and SHAP have been established,
they can generate misleading explanations on the true reason for a prediction by
a model [2,3,7,26]. These methods are designed for domain experts who can as-
sociate meaningful concepts with visual features highlighted in the explanation.

Concept-based explanations are another type of post-hoc explanations. In a
concept-based explanation, explanations go beyond features of each image and
identify higher-level human-understandable concepts that are true for the en-
tire dataset [8]. Concept Activation Vectors (CAVs) are another method used
in concept-based explanations to provide clarification about a neural net’s in-
ternal state in terms of human-friendly concepts [13]. Because of the human-
explainability focus of these works, they are easier to understand by humans.
TCAV and its explainability implications have been widely used in medical
applications [6, 16, 22]. Some other methods suggest configuring the architec-
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ture of the model to achieve Post-hoc Concept Bottleneck models (PCBMs)
[25]. These explanability methods also assume the familiarity of the user with
the defined concepts. If a layperson is presented with these explanations, they
might not understand them, as a familiarity with said concepts is implicitly
expected by concept-based explanations. Our Human Teachable Concept High-
lighter (HuTCH) method produces explanations based on human-understandable
concepts with the aid of a field expert, and further highlights the region contain-
ing the concept. We separate the decision-making process of the model and the
explanations that are generated by our model, which are highly teachable and
interpretable to learners.

3 Methodology

In this paper, we highlight a region of an input image containing a teachable
concept to learners based on information from a human expert using the HuTCH
framework. HuTCH’s highlights are more similar to that of human expert’s,
indicating its applicability as a tutor for teaching visual tasks.

3.1 Concepts, Datasets and Model

A visual identification task pertinent to teaching citizen scientists is the clas-
sification of bees versus wasps. Entomologists look for specific characteristics
when encountering an insect that is either a bee or a wasp; for example, hair on
the body, or the narrowness of the abdomen and thorax connection, commonly
known as a "pinch-waist". These two are some of the most important concepts
differentiating bees and wasps. These concepts are suitable for citizen scientists
to aid them in this specific visual identification task. As a result, we tuned our
explainability method to these two features.

The data used in this study is gathered from the iNaturalist website [1].
We chose bee species that display hair on their body, and wasp species that
have the pinch-waist feature. In total we selected 23 bee species and 17 wasp
species, and 226,892 images of bees and 229,921 images of wasps were collected.
To highlight regions containing a certain concept using our HuTCH method, we
defined a concept dataset with 200 bee and 200 wasp images. A human expert
selected one region in each image that contains the corresponding concept, and
one region where the concept is absent, resulting in two datasets: one for each
concept, containing 200 positive and 200 negative examples. Next, we augmented
our dataset, resulting in 9,600 positive and 9,600 negative samples.

We used 60 bee images and 60 wasp images for our comparisons. First, the
original images are resized to 224 by 224 and then segmented using the Mask R-
CNN ResNet-50 object instance segmentation method [11] with zero threshold to
find the largest segment. The results are then given to the expert, the saliency
highlighter, and our two HuTCH highlighter methods, each outputting their
highlights. For the CNN model, we chose the ResNet-152 architecture [12], and
the model was re-trained as a whole, accounting for mean and standard deviation
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values of the training dataset. The trained ResNet-152 CNN model was tested
on 34,022 bee and 34,481 wasp images, achieving a combined F1 score of 96%.

3.2 Concept Activation Vectors

CNNs transform images to higher representational spaces and extract many
complex features. In the case of ResNet-152, we use the output of the second
convolutional layer of the third bottleneck layer of the fourth residual stage,
which contains 512 features each with a spatial dimension of 7×7, our layer of
interest. We then pass each of our concept datasets to the model and train a
linear classifier on the flattened activations of our layer of interest. The vector
containing weights of this linear classifier is the Concept Activation Vector. Later
on, using the dot product of the flattened activations of a new image and the CAV
of a concept, we can calculate the alignment of that image with that concept.

3.3 Comparison with Human Expert and CNN Highlights

Using the selected 120 test images, we ask the expert, the saliency map method,
and our HuTCH method to highlight what each considers the most important
region. The human expert highlights the relevant concept region in each image;
in the case of a bee, the hair region, and in the case of a wasp, the pinch-waist
region. The expert highlights only one continuous region. The CNN model, using
the normalized gradients with a threshold of 0.05, calculates the saliency map of

Fig. 1. The workflow of highlighting images by each method. A Each input image
is filtered to the biggest object segment. B The two HuTCH methods partition the
image into sub-images via rectangles and masks respectively, and calculate the sub-
images with the highest CAV scores. C The combined region of top K sub-images is
highlighted by each method. D The highlights are compared to the expert’s highlighted
region via IoU and Dice metrics. E The overlapping region is shown.
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each image. The acquired saliency map of each image is then further partitioned
into rectangles. Each map is partitioned into rectangles of widths and heights of
56, 74 and 112, and are saved separately to create new images referred to as sub-
images. The average gradient value of all sub-images is then measured and sorted.
The sub-images corresponding to the top K highest average gradient values are
overlapped and combined, which is the highlighted region of the saliency map.

3.4 HuTCH Highlights

Our HuTCH method highlights regions in which a certain concept is most
present. First, each image is passed to the CNN model to make a prediction
of whether it is a bee or a wasp. Then, the concept to look for is set to hair or
pinch-waist respectively; this is done to combine the accuracy of CNNs with the
teachability of expert-defined concepts. We then further segment the image with
a 0.05 threshold to filter out the background from the insect. Next, using two
different methods, HuTCH further partitions the image; once using rectangles,
called HuTCH Rectangle, and another time using all the segments generated by
the Mask R-CNN segmentation method [11], called HuTCH Segmented.

In the HuTCH Rectangle, similar to the saliency partitioning, the image
is partitioned into all possible rectangles with sides of 56, 74, and 112 pixels,
referred to as sub-images. This dissects every single image into two datasets,
one dataset of sub-images of HuTCH Rectangle, one dataset of sub-images of
HuTCH Segmented. Finally, each sub-image of each HuTCH dataset is passed
through the model to acquire the activation from the layer of interest. The dot
products of the flattened activations and the CAV of the respective concept
are then measured and sorted [13]. The sub-images corresponding to the K
highest dot products are merged together, producing the highlighted region of
each HuTCH method.

Table 1. The average and standard deviation of IoU scores between highlighted regions
of each method and expert highlights.

Method Top 1 Top 2 Top 3

Saliency Rectangle Highlight 0.155± 0.166 0.189± 0.164 0.209± 0.164
HuTCH Segmented Highlight 0.237± 0.165 0.237± 0.124 0.238± 0.112
HuTCH Rectangle Highlight 0.275± 0.211 0.309± 0.190 0.307± 0.161

Table 2. The values for Dice coefficient between highlighted regions of each method
and expert highlights.

Method Top 1 Top 2 Top 3

Saliency Rectangle Highlight 0.237± 0.288 0.288± 0.220 0.317± 0.216
HuTCH Segmented Highlight 0.356± 0.212 0.368± 0.159 0.372± 0.140
HuTCH Rectangle Highlight 0.388± 0.263 0.439± 0.230 0.446± 0.198



6 E. Mirhaji et al.

4 Results and Discussion

In order to compare the highlighted region from each method (Saliency Rectan-
gle, HuTCH Rectangle and HuTCH Segmented) with the highlighted region by
the expert, we used two metrics; Intersection over Union (IoU) and Dice coef-
ficient. The HuTCH Rectangle and HuTCH Segmented methods are compared
to the region that the expert has marked as relevant for learners to correctly
identify the insect. The overall workflow can be seen in Figure 1. The results of
the average and standard deviations of comparisons can be viewed in Tables 1
and 2 on the aggregated top K regions respectively.

The concept that the expert highlights is something that is understandable
by humans and is used to teach about different taxa in entomology. Compared
with salience maps, HuTCH methods more accurately align with expert high-
lights of key visual concepts for learners. By combining the teachability of our
methods and the high accuracy of CNNs, we can teach learners with high cer-
tainty and high explainability. In this work, the HuTCH framework bridges the
gap between AI models’ accuracy and human-teachable features, contributing
to the incorporation of explainable AI in teaching. We have demonstrated that
concept-based highlighting achieves more alignment with expert highlighting and
thus improves the teachability of the explanations. Our method demonstrates
how AI models’ high performance can be coupled with human-understandable
interpretability. This explainability approach can be used as an enhancement for
educational settings, complementing educators or fully taking the expert’s place
for visual teaching tasks.

5 Limitation and Future Work

In our segmentation method, we used the mask R-CNN ResNet-50 model, which
is trained on Microsoft’s COCO dataset; sometimes unrelated background patches
found their way into our sub-images, which resulted in erroneous CAV scores.
More fine-tuned and specialized segmentation methods that can better segment
bees and wasps into different sections would help us work with finer concepts
used by human experts. Another limitation was the quality of the dataset as they
were captured by amateurs and enthusiasts, sometimes lacking focus or visibility
of insects. A cleaner dataset would improve the accuracy of both classification
and concept highlights. Currently, we have only used two concepts, body hair
and pinch-waist, for training the CAVs and subsequently the linear classifier.
We also only trained the CNN on a few bee and wasp species exhibiting these
features. For future work, we can expand the concepts and the training dataset
to include more features and more species showing those features.
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