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Abstract

One of the core challenges of explaining decisions made by modern AI systems is

the need to address the potential gap in the inferential capabilities of the system

generating the decision and the user trying to make sense of it. This inferential

capability gap becomes even more critical when it comes to explaining sequential

decisions. While there have been some isolated efforts at developing explanation

methods suited for complex decision-making settings, most of these current

efforts are limited in scope. In this paper, we introduce a general framework

for generating explanations in the presence of inferential capability gaps. A

framework that is grounded in the generation of simplified representations of

the agent model through the application of a sequence of model simplifying

transformations. This framework not only allows us to develop an extremely

general explanation generation algorithm, but we see that many of the existing

works in this direction could be seen as specific instantiations of our more general

method. While the ideas presented in this paper are general enough to be applied

to any decision-making framework, we will focus on instantiating the framework

in the context of stochastic planning problems. As a part of this instantiation,

we will also provide an exhaustive characterization of explanatory queries and

an analysis of various classes of applicable transformations. We will evaluate
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the effectiveness of transformation-based explanations through both synthetic

experiments and user studies.
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1. Introduction

While AI as a field has made rapid progress in recent years, we are still far

from realizing the truly transformational potential of AI systems in our society.

Chief among the obstacles to achieving this goal is the inability of our current

AI systems to work effectively with people from all walks of life. Meeting this5

challenge requires us to rethink our current paradigms for agent design. We

need to look beyond just measuring the effectiveness of agents in terms of their

capability to achieve their assigned goals, and consider their ability to communi-

cate and explain their decisions to their end-users intuitively. Additionally, they

should allow their users to critique their decisions and, as required, be able to10

incorporate user suggestions. While the creation of explainable agents capable

of supporting such interactions has been receiving significant attention lately

[1, 2], we are still at the beginning stages of creating systematic approaches to

explaining AI agent decisions and facilitating such interactive dialogues.

One of the core challenges of explaining any automated decisions, particularly15

in sequential decision-making problems, is the complexity of the underlying

reasoning problems. Many modern planners and reinforcement learning (RL)

agents can generate solutions to problems that most everyday users would find

hard to comprehend completely, let alone solve. In other words, the problem

of generating explanations in these scenarios are made more challenging by the20

presence of an inferential capability gap between the user and the decision-making

system. Thankfully for most explanatory queries that a user may raise, we would

hardly ever need to expose them to the full complexity of the original problem.

Instead, we can often get by using just a simplified representation that suffices to

answer their specific question. In this paper, we will operationalize this intuition25

to generate effective explanations by introducing an explanation generation
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framework that generates simplified representations of the original model that is

sufficient to respond to a given user query. To ground this framework, we will

look at the use of this explanatory framework in the context of a very general

version of sequential decision-making problems, namely, goal-directed stochastic30

planning problems.

Figure 1: The model simplification process used to generate the explanations for the motivating

example, where a robotic chef needs to explain its inability to bake a cake.

Figure 1 presents a diagrammatic representation of the overall explanatory

process entailed by the methods presented in this paper. Specifically, the figure

refers to the example scenario which considers a robotic chef working in a house.

Example 1. In this example the user of the robot starts by asking the robot to35

bake a cake, to which it replies it can’t bake a cake. Now, the user demands an

explanation for its failure to prepare a cake. The robot may have come to the

conclusion that it cannot prepare a cake from the fact that its stochastic task and

motion planner failed to produce a valid plan. Dumping its search tree or the

underlying model to the human would hardly suffice as a satisfactory explanation.40

Suppose the robot was to analyze the planning problem; it could find out that

the problem remains unsolvable even if it were to ignore the stochasticity of
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the domain (related to various slippages the robot may incur in its operation)

and all the motion constraints. The robot isn’t even able to create cake batter,

which is required for the final goal, because it doesn’t have a whisk. The robot45

could ignore all low-level details and just surface a simplified model to the user

containing information about the mixing action, which includes the fact that the

action requires access to a whisk. Now, given this model, the robot can walk the

human through a hypothetical trace where it tries to make the cake better and

show that it would fail at the mixing step due to the missing whisk. Now, this50

hypothetical trace provides a simple example demonstrating the robot’s inability

to achieve its goals. We will refer to such secondary explanatory information as

explanatory witness.

Throughout this paper, we will see how our framework can help generate

this exact explanation. As for the rest of the paper, we will start the technical55

discussion by providing an overview of the framework (Section 3.1). We will

provide a small summary for each framework component with pointers to relevant

sections that provide a detailed discussion of each component. Section 3.2 will

provide formal definitions of some of the central concepts we will be using in

the paper, including inferential gap, explanatory criteria, and model simplifying60

transformations, and lay out the basic algorithm to compute explanatory models.

With the basic framework in place, we will delve deeper into the grounding

of the framework in the context of stochastic planning problems and go over

the characterization of each component of the framework in this setting. This

would involve providing an exhaustive characterization of contrastive explanatory65

queries possible in stochastic planning settings (Section 4) and introducing a

set of a model transformation (Section 5). Each model transformation class

presents a conceptually consistent formalization of a large class of specific

transformations that could be applied to a given planning problem to simplify

the problem. For each transformation class, we will also point to some previous70

works in the wider explainable AI (XAI) literature that have applied similar

techniques, thereby presenting a previous instance of a limited application of
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our more general framework. For each transformation class, we introduce one

specific technique that only takes polynomial time to perform and analyze the

properties of the specific technique for the class of stochastic planning problems75

we are interested in. Section 6 will introduce a more constrained version of the

algorithm introduced in Section 3 specifically designed for the transformation

classes introduced in Section 5 called the stratified search algorithm. Section

7 presents the various experiments we performed to evaluate the explanation

generation method discussed here. In particular, Section 7.1 presents a user80

study on the effectiveness of our overall framework and measures the effectiveness

of the individual transformations. In Section 7.2, we evaluate the effectiveness

of the generated explanation using computational proxies for the complexity.

In section 8, we will further see how most current works aimed at addressing

the inferential capability gap can be seen as a specific instance of our more85

general framework. In particular, we will discuss how each existing work can

be seen as using some limited set of transformations or focuses primarily on

providing an explanatory witness. All the frameworks and analyses will be

grounded in the context of MDPs with the P assumption (i.e., Positive action

cost assumption) [3], which generalizes over many commonly studied stochastic90

planning formalisms.

2. Background

The decision-making model we will use throughout the paper is the undis-

counted MDP with absorbing goal states that tries to generate optimal solutions

under total expected cost criteria. Such models can be described by a tuple of95

the formM = ⟨S,A, P,C, I,G⟩, where S is the state space, A the set of possible

actions, P : S ×A× S → [0, 1] the transition probabilities, C captures the cost

of executing a given action in the state and it resulting in a new state, I ∈ S

the initial state and G ⊆ S, is the set of absorbing goal states. General MDP

definitions also allow us to limit what actions are applicable in which states,100

but we will skip explicitly capturing that to simplify the notations. We will
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specifically limit ourselves to cases where all state-action-state tuples satisfy the

condition C(s, a, s′) ≥ 0. MDPs that satisfy this condition are usually referred

to as satisfying the P -assumption or the positive action cost assumption (cf.

[3]). While most of the results established in the paper also apply to other105

settings, say when all costs are guaranteed to be less than or equal to zero, we

will mostly focus on the former as it is better suited to goal-directed problems.

We wanted to preserve goals in the problem formulation as there is plenty of

evidence from psychological studies that show that people tend to think in terms

of goals when performing planning [4]. MDPs with P -assumptions are still an110

extremely general formulation and cover several formalisms studied frequently in

AI literature, including non-negative cost infinite horizon discounted MDPs [3],

non-negative cost SSPs [3], MAXPROB MDPs [5], NEG Mdps [6], non-negative

cost GSSP’s [5], SSPUDE’s [7] etc.

We will use the functions J : S → R and Q : S × A → R to capture the115

expected total cost and Q function and use J∗ and Q∗ to represent the optimal

cost and Q function respectively. A policy is said to be optimal if Jπ(s) = J∗(s),

where Jπ is the cost function obtained by following the given policy. In the

most general case, a policy takes the form π = ⟨µ1, µ2, ...⟩, where each µi is a

mapping from state to action for a timestep i. A policy is said to be stationary if120

the mapping does not depend on the time step. Under the P assumption, value

iteration converges if the cost function is initialized with a bounded cost function

less than the optimal cost function (say zero cost function), provided there exists

a fixed point to the function. In addition to the optimal cost, a factor that we

will be considering throughout the paper is the probability that the execution of125

policy from a given state would lead it to a goal state Pπ(s) =
∑

g∈G P (g|s, π)

and we will P ∗(s) to denote the highest possible probability of achieving the goal

under any policy for the given model (which we will refer to as the MAXPROB

policy) and use Pπ(s) to capture probability under a given policy. In most cases,

we will focus on the cost and probability of achieving the goal from the initial130

state and states reachable from the initial state.

Effectively, in this scenario, planning for MDPs becomes a multi-objective
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optimization problem, where the objectives become the cost of the solution and

the reachability of goals. This may come across as surprising to readers who are

most familiar with the more restricted classes of MDPs, where any potential goals135

are usually compiled into the cost function. Thus, one may anticipate that all

goal reachability queries will be resolved through cost differences. More general

variants of MDPs like iSSPUDE [7] use the probability of getting to the goal as

a separate optimization criterion for choosing the policy. So, instead of choosing

a plan that directly optimizes the cost, they use the probability of getting to140

the goal as the primary criterion and the cost as the secondary one. This also

means that in every case, there exists a strict ordering between the objectives,

and we don’t need to rely on additional considerations like establishing Pareto

optimality or considering the two objectives simultaneously.

A given MDP could be represented in multiple ways, a particularly popular145

way one could represent such models is to describe them using problem description

languages like PPDDL [8]. Mathematically a model described in PPDDL is

given by a tuple of the formMD = ⟨FD, AD, ID, GD, CD⟩, where

• FD is the set of propositions used to define the state space. Each state in

the model will be a specific instantiation of these propositions. That is,150

each state si can be uniquely represented by the set of facts true in that

state, i.e., si ⊆ F . These propositions are also sometimes referred to as

state fluents and state factors in the literature (cf. [9]).

• AD is the set of actions available in the model. Each action ai ∈ AD is

further defined as following ai = ⟨preci, Ei⟩155

– preci ⊆ F denotes the preconditions of the action. An action is only

applicable in states where its preconditions are true, i.e., action ai is

executable in a state sk if preci ⊆ sk.

– Ei is the set of mutually exclusive effects that the execution of the

action can cause. Each individual effect eji ∈ Ei, if further represented160

by the tuple ⟨addji ,del
j
i , p

j
i , c

j
i ⟩, where
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∗ addji ⊆ F , called the add effects, is the set of facts that will be

turned true by that effect in the resultant state.

∗ delji ⊆ F , called the delete effects, is the set of facts that will be

turned false by that effect in the resultant state.165

∗ pji , of the probability of occurrence of that particular effect (the

distribution over the individual effects is expected to form a well

formed probability distribution).

∗ cji is the cost associated with the transition

• ID initial state, we expect the system to start in that state.170

• GD ⊆ FD is the goal specification, where any state si such that GD ⊆ si

is considered to be an absorbing goal state (or destination state).

Each valid description of the above form is expected to translate into an

MDP of the formM = ⟨S,A, I, P, C,G⟩, where

• S is the set of states of the model and corresponds to the state space175

defined by F (i.e |S| = 2|F |). For each i ∈ S, we will use si to denote the

symbolic state (described by the set of propositions that are true in the

state).

• A is the action/control space of the underlying MDP and is isomorphic to

the set A and will use amdp
aj

to represent the corresponding action for the180

symbolic action aj , moreover A(i) = {amdp
aj
|precj ⊆ si} (i.e. the actions

available at a state i).

• I is underlying atomic state corresponding to ID

• P is transition probability and is defined as follows

P (i, amdp
ak

, j) = pmk

if there exists an effect emk ∈ Ek such that sj = (si \ delmk ) ∪ addmk , else it185

is 0. Note that given the assumption the effects are mutually exclusive,
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there exists at most one effect that can cause this transition, provided

there are no redundant effects (i.e., ones that leave the state unchanged

because of adding existing facts or trying to remove missing facts).

• G is the set of destination or goal nodes that correspond to the ones190

specified by G, i.e., for i ∈ G, the corresponding symbolic state si, will

satisfy the condition GD ⊆ si.

• C : S ×A× S is the cost function. As with the transition probability, the

cost function is given by cji .

For a given descriptionMD, we will use the notationM to refer to the MDP195

induced by it, especially if we don’t explicitly mention the underlying MDP. Two

facts that might be worth keeping in mind is (1) for any MDP with a finite set

of actions and states can be captured by a description and (2) for a fixed fluent

and action set, the model description for a given MDP is unique.

Such factored model descriptions are usually easier for people to understand200

and create, not just due to conciseness, but also because it is based on folk

psychology principles regarding actions and as such are intuitive descriptions

[10]. We assume that models are provided in such descriptions, though one

could always start with an atomic or inscrutable representation of the model

and derive such models through different learning methods [11, 12].205

3. Our Approach - The Model Simplification Framework for Con-

trastive Explanation Generation

3.1. Approach Overview

In this section, we provide an abstract overview of the framework and by

extension for the paper as a whole. We will touch on each component of210

the framework, discuss how the component comes into play in generating the

explanation discussed in Section 1 and provide relevant pointers to parts of the

paper that will cover the component in greater details.

Figure 2 presents an overview of our explanation generation method.
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Figure 2: A diagrammatic overview of the overall explanation generation framework, along

with annotations on the paper sections where we will discuss the specific components.

3.1.1. Explanatory Queries and Explanatory Criteria215

The explanatory process in our case is initiated when the user raises an

explanatory query. This paper will exclusively focus on contrastive queries [13],

where the user is interested in why the system chose the current decision as

opposed to an alternate decision they may have expected. The question discussed

in Example 1, i.e., “Why can’t you bake the cake?”, is in fact a contrastive query220

presented in an implicit form. One can equivalently represent the query as

“ Why is the system claiming that no solution is possible as opposed to following

some policy π′?”

For each query, we will identify an explanatory criterion. An explanatory criterion

corresponds to a bound on the possible value that a valid solution can take225

along one of the optimization objectives (i.e. cost or probability of reaching the

goal), but that would need to be violated for the alternate plan to be preferred

over the current decision. For example, in the case of the query discussed in
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Section 1, an explanatory criterion would be the fact that there exist no policy

for the model, in which the probability of reaching the goal from initial state is230

bigger than zero. This explanatory criterion will be surfaced to the user along

with the rest of the explanatory information. We will provide a more formal

characterization of explanatory criteria in Section 3.2 and Section 4 will include

an exhaustive characterization of all types of explanatory criteria possible in a

stochastic planning setting.235

3.1.2. Inferential Capability Gap

Our central explanatory challenge is the fact that there may exist an asym-

metry between the human and the system with regards to their computational

capabilities (referred to as the Inferential Capability Gap). In Example 1, human

would find it much harder to use the information regarding the complete task240

and motion planning problem to verify whether in fact there exists any policy

which can get to the goal with non-zero probability. We will operationalize such

computational effort required by the human by using a proxy function CompH .

We will use this CompH function to identify explanatory information that places

minimal computational demands on the user. We will formalize CompH in245

Section 3.2 and delve further into how we can operationalize it in Section 3.3.

3.1.3. Simplifying Model Transformations

The argument we will make throughout this paper is that even if the complex-

ity of establishing an explanatory criterion (as measured under CompH) in the

original model is high, one can use simplified representations of the original model250

where one could establish that the same criterion is satisfied with lower effort. In

Example 1, rather than asking the user to reason about the unsolvability of the

full stochastic task and motion planning problem, the system surfaces a much

simpler problem, i.e., it presents its inability to create batter even while ignoring

all the motion level constraints and any non-determinism in the task.255

We can create such simpler representations, by taking the original model

and applying a sequence of model simplification transformations. To ensure that

11



presenting the user with a simplified model doesn’t mislead the user about the

underlying task, we will additionally enforce that the transformations will not

violate any explanatory criteria that were previously true. A requirement we will260

capture under a concept referred to as the soundness of the transformation. The

central computational challenge for generating such explanations is to identify

the sequence of transformation that will generate the simplest representation

that still conserves the explanatory criteria, which previously held. We will

formalize model transformations in general in Section 3.2 and discuss specific265

transformation classes in Section 5. We discuss methods for generating the

transformation sequences in Section 3.5 and look at a more specialized algorithm

in Section 6.

3.1.4. Explanatory Witness

Even after providing the model, the user may not be able to reason about the270

explanatory criteria on their own and as such may require additional assistance.

We will refer to such information as Explanatory Witness. These specifically

correspond to additional information extracted from the simplified model that

demonstrates why the criteria are satisfied by the given model. We will provide

a detailed discussion and a classification of the explanatory witness classes in275

Section 3.4 along with the discussion of how we will generate them for the

problems we consider. Also in the related work (Section 8) we will also provide

a discussion of the various explanatory witnesses that has been considered

previously in the literature.

3.1.5. Final Explanatory Message280

As part of the final explanation the system would surface the following

information, (a) an explanatory criterion (though depending on the context this

may be implicit), (b) a simplified model where the criterion would be satisfied,

and (c) an explanatory witness that demonstrates the fact that the criterion is

satisfied.285
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In example 1, surfacing the explanatory criterion involves mentioning that

there are no policies with non-zero goal reaching probabilities. The model is

constructed by skipping motion level constraints, the probability information

and considering a more myopic objective (i.e., making batter). Finally, the

explanatory witness here consists of the sample trace.290

3.2. Framework Formalization

Our basic explanatory setting consists of a sound and optimal model-based

decision-making system that uses model MR∗
(which may correspond to a

description MD∗
), to come up with its decisions and it needs to respond to

possible explanatory queries a user of the system may raise either about its295

current decision or about alternative decisions the user may have expected.

The central focus in this paper is to provide contrastive explanations [13],

where contrastive explanations are said to be explanations that take the form of

responses to questions of the form “Why P and not Q?”, where ‘P’ is referred

to as the fact being explained and ‘Q’ is referred to as the foil the fact is being300

contrasted against. There is a lot of evidence from social science literature that

contrastive explanations underpin most of our everyday explanatory dialogues

and, as such, have been receiving a lot of attention in recent years [13, 14, 15].

In our scenario, we are always interested in answering questions of the form.

“ Why policy π and not any policy in the set Π′”305

That is the explanation always comes down to establishing the choice of one

policy π (possibly the current one being proposed by the system), over the set

of alternate policies (possibly expected by the user). More formally,

Definition 1. An explanatory query is represented by a tuple of the form

Q = ⟨π,Π′⟩, where π, referred to as the fact policy, corresponds to the policy310

proposed by the system and Π′, referred to as the foil set, corresponds to the

alternate policies expected by the user.

To support explaining unsolvable planning problems (i.e., there exists no
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policy with non-zero probability of reaching the goal), we will use the notation ∅

to denote the fact policy for an unsolvable planning problem.315

In cases where the system is a sound, complete and optimal decision-maker,

the system can respond to an explanatory query by establishing the preference

of one fact policy over the foil set (or at the very least establishing they are

equivalent). In the the MDP classes studied in this paper, this always takes

the form of establishing that the fact policy either has a higher probability of320

achieving the goal or lower cost as compared to the policies in the foil set.

In this paper, we will argue that one could achieve a deeper insight into the

explanatory process by separating the form of the question from the underlying

model constraint that needs to be established as part of resolving the user query.

In essence, one could convert every contrastive explanatory query into a problem325

of establishing that a planning model can only generate solutions that satisfy a

particular threshold with respect to one of its optimization objectives.

However before defining an explanatory criterion, we will introduce the notion

of a policy satisfying an optimization threshold. Specifically, an optimization

threshold specifies a threshold (i.e., an upper bound or a lower bound) over330

one of the optimization metrics (i.e., cost or goal-reaching probability). In the

case of cost, we will limit ourselves to a lower bound and for reachability we

will only consider upper bounds. A policy is said to satisfy the threshold for a

given model, if the threshold satisfied by the valuation of the policy in the initial

state (or more generally a state of interest) in the dimension of the optimization335

metric specified in the threshold. More formally, we will denote this as,

Definition 2. An optimization threshold is denoted by a tuple τ = ⟨O,X⟩,

where O is an optimization objective (cost function J or goal-reaching probability

P ) and X is an upper bound or a lower bound over O. A policy π is said to

satisfy τ in a modelM, if Oπ(I) as evaluated in the modelM satisfies X .340

An explanatory criterion is essentially an optimization threshold that is

satisfied by the fact policy but not by the foil policies.
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Definition 3. For an explanatory query Q = ⟨π,Π′⟩ and an optimization

threshold κ = ⟨O,X⟩, a model M is said to satisfy κ with respect to Q, if

under modelM, π satisfies κ but none of the foil policies in Π′ does (denoted as345

M |=Q κ).

Definition 4. For an explanatory query Q = ⟨π,Π′⟩, an optimization threshold

κ = ⟨O,X⟩, is said to be an explanatory criterion for a model M, if π

is preferred over Π′ when M satisfies the criterion κ with respect to Q (i.e.,

M |=Q κ).350

The above definition lays out explanatory criteria as applicable in cases where

the foil set may be explicitly enumerated. In many cases, the foil set may only be

implicitly specified. As we previously saw, the foil set in Example 1, corresponds

to set of all policies. In this case, the explanatory criterion must be satisfied by

all possible solutions for the given model. To capture this case, we will treat the355

satisfaction of explanatory criteria as a model-level property, i.e., we will simply

use the notationM |= κ orM ̸|= κ by dropping the query subscript.

Definition 5. For an optimization threshold κ = ⟨O,X⟩, a modelM is said to

satisfy κ, if for modelM, every policy π satisfies κ (denoted asM |= κ).

Note that this is a more general formulation, as we can always capture explicit360

foil and the fact policy cases by creating new models that only allow the policies

in question.

With respect to the Example 1, one explanatory criterion could be κ = ⟨P,= 0⟩,

i.e., if the criterion κ is satisfied by the model, then the model is only allowed to

support policies whose probability of achieving the goal is equal to 0.365

Section 4 presents an exhaustive characterization of all explanatory criteria

possible in a stochastic planning setting and how they connect to every possible

contrastive query.

While explanatory criteria help establish why the foils may not be preferred,

we still have to discuss how the user may realize that the explanatory criterion370

is satisfied for the given problem. Towards this end, the paper builds on the
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basic fact that humans are agents capable of reasoning about sequential decision-

making problems. Thus, as long as the model is in a human-readable form 1,

the system could communicate the model information and expect the human to

try to reason about whether the relevant explanatory criteria satisfy on their375

own. However, such a naive approach would overlook the fact that the original

decision-making problem may be too complex for the user.

To ensure that our explanation method does not place undue cognitive

demands on the user, we will try to explicitly take into account how easy it

is for a user to verify whether an explanatory criterion is satisfied in a given380

model. To capture the inferential burden placed on the human or any agent

by an explanation, we will introduce the function Comp(·, ·) to denote the

computational capability of the agent. This function will capture the time taken

by the agent to establish whether an explanatory property is satisfied for a given

model.385

Definition 6. For a given set of models M and a set of explanatory properties K,

the computational capability function Comp : M×K→ R ∪ {∞} function

returns the time taken by a reasoning agent to establish whether an explanatory

criterion κ ∈ K is satisfied in a modelM ∈ M. The function returns ∞ if the

agent is incapable of establishing whether the criterion is satisfied.390

We will use CompH to denote the computational capability function for the

human and Compsys for the one associated with the AI agent. There effectively

exists an inferential capability gap between the two if the computational capability

function returns different values for the same model and explanatory criterion.

Definition 7. An inferential capability gap is said to exist between a human395

(with function CompH) and a decision-making system (with function Compsys)

for a modelM and an explanatory criterion κ, if

Compsys(M, κ) ̸= CompH(M, κ)

1We assume our models to be already in a human-readable form, and even if they are not

one could always convert them to such forms using methods like those discussed in [11]
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In theory, we could have Compsys(M, κ) > CompH(M, κ), i.e., cases where

for the same model the human has an easier time establishing some criterion, but

in this paper we are mostly interested in cases where we have Compsys(M, κ) <400

CompH(M, κ)

Now the central argument we will make throughout this paper is that even if

the complexity of establishing an explanatory property in the original model is

high (measured in terms of CompH(M, κ)), one can use simplified representations

of the original model where one could establish that the criterion is satisfied with405

lower effort. We can now give the user information about this simplified model

and even use this model as a basis for generating other explanatory information.

In particular, we will look at the generation of explanatory witnesses that will

help the user better understand why the criterion is satisfied in the current

model.410

Towards formalizing this intuition of explanation generation, we will first

start by introducing the notion of model transformation that will become the

basis of our remaining framework. In the paper, we will refer to a model

transformation function as one that takes a valid MDP model and generates a

new MDP specification, i.e.,415

Definition 8. A model transformation is a function of the form F· :Mi 7→ Mj

whereMi was the original MDP andMj is the newly generated MDP, where

bothMi andMj are two MDPs that satisfy P-assumptions.

Note that the above definition is an extremely weak notion and not one

that in any way helps us build model representations that could help resolve420

users’ queries. To establish that, we need to introduce two new notions about

the transformations, namely, soundness of transformation and whether the

transformations are building simpler representations.

The soundness of transformation relates to whether any explanatory criterion

that is satisfied in the new model has a corresponding criterion that was satisfied425

in the original model, or more formally:

Definition 9. A model transformation Fi is said to be a sound transformation
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for a model M with respect to an explanatory criterion κi, if whenever κi is

satisfied by Fi(M), it is also satisfied byM.

Note that we are not requiring the transformations to always preserve the430

explanatory criterion, i.e., κi satisfied by M if and only if κi satisfied by

Fi(M). As we will soon see most of the effective transformations we will look

at results in optimistic approximations, where we can’t always guarantee that

the transformations will preserve the criterion, but we can be sure that the

transformations are sound as defined above,i.e., there couldn’t exist a criterion435

κ, such thatM ̸|= κ but Fi(M) |= κ.

Each transformation we described in the introduction, which we will go into

further details in Section 5, are examples of sound transformation for the ex-

planatory criterion ⟨P,= 0⟩

440

Now we will assert that transformation results in a simpler representation

or equivalently is a simplifying transformation if it is easier to establish the

criterion in question in the resultant model, i.e.,

Definition 10. A transformation Fi is said to be a simplifying transforma-

tion for a model M and criterion κ, if CompH(M, κ) > CompH(Fi(M), κ),445

additionally F(M) is referred to as a simpler representation ofM.

One can now see that what we hope to build as explanations are models

that are built by repeated application of simplifying but sound transformation.

However, there is a big question we have yet to answer, namely, how does one

stop the method from generating extremely simple models that are, nonetheless,450

completely disconnected from the original problem at hand? Effectively this

would turn the output of the methods into lies rather than satisfying explanations

(comparable to discussions provided by papers like [16]), as it would give the user

no further insights into the original planning problem. One could try to avoid this

by placing restrictions on the types of models generated by the transformation455

functions. For example, requirements like the need to share action/state-space or

the need to preserve some transition function. However, most of these methods
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are too limiting and insufficient when we consider cases where there might exist

a vocabulary mismatch between the user and the decision-maker [11]. In such

cases, one might need to translate the current system representation into forms460

that are easier for the user to follow and it may be quite hard to establish

any form of equivalence between model components of the learned models and

the original model. Instead, in this paper, we will define the validity of the

explanations in terms of their impact on human expectations about the system.

In particular, we will require that the transformed model doesn’t satisfy any465

explanatory criteria not true in the original model (i.e., the model on which

the transformation function was applied). Effectively this would make sure that

the transformation does not prevent the user from asking any question they

might have about the system’s capabilities. This will effectively ensure that the

user doesn’t place unwarranted trust in the system due to the explanation, a470

requirement for generating effective posthoc explanations [11]. We will refer to

such as universally sound transformations for a given model:

Definition 11. A transformation function F is said to be universally sound

for a model M, if for any explanatory criterion κ, we have F(M) |= κ, then

M |= κ. Equivalently we will refer to the model F(M) a universally sound475

representation ofM.

All the transformations we will discuss in Section 5 are examples of universally

sound transformations. Additionally, we will require that every transformed

model presented to the human be explicitly noted to be a simplification of the

true model, while noting the exact relationship between the true model and480

transformed model when possible. Usually when we look at transformations

that are generated through syntactic transformations of human readable model

descriptions (as in the case of transformations discussed in Section 5), such

relations are much easier to note.

It is worth keeping in mind that our objective here is to identify a potential485

model where the current solution can be contrasted against the foil. One of the

goals of the explanatory process would be to help induce a user mental model
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that is equivalent to this model. However, there could be a component of the

explanatory message which also contains explicit information contrasting the

two, we will look at such information in Section 3.4.490

3.3. Modeling User’s Computational Capabilities

The previous section only provides a cursory discussion of the function cap-

turing the computational burden placed on the human to establish a specific

criterion, i.e., the function CompH(·, ·). An exact characterization of CompH(·, ·)

would be hard, since it would require accurately capturing the inferential ca-495

pabilities of the human. However, one could still use a number of simpler

representations of CompH(·, ·) to calculate useful representations, some of the

possible choices here include

• Using computational model with psychological fidelity - This could corre-

spond methods like, the ones that leverage computational implementation500

of psychological models like prospect theory [17], use of decision-making

algorithms that make use of limited memory [18], use of various models of

bounded-rationality including ones from behavioral game theory like the

finite nested rational model [19], etc. However, works in these models are

still in preliminary stages and we are unaware of any existing techniques505

that could directly be applied to our problem framework.

• Directly learning CompH - Another possibility might be to directly learn

the CompH function from data collected from human subjects. While we

are unaware of any method that can currently learn the function of the

form we require, some preliminary work in this direction include [20].510

• Using Computational Proxies - While we may not have access to CompH ,

we could directly measure the hardness of establishing the explanatory

property using exact and sound methods and measuring the time. While

this isn’t expected to be equal to the actual inferential burden faced by the

user, we could use this as an approximation of the exact value. In addition515

to exact time taken by an automated reasoner, one could also use other
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measures like the size of description, length of the most likely policy trace,

etc.

• Using Human-Subject Studies to Establish Effectiveness of Individual

Transformations - Another method might be to not directly learn CompH ,520

but instead identify any preference use might have on various types of

transformation that may be applicable for simplifying a given model. Then

one could leverage the preference between the transformations to identify

solutions that may be preferred by the user.

In this paper, we will mostly focus on the latter two strategies, wherein we will525

look at generating simplified model that are simpler with respect to an automated

reasoner. We also introduce an ordering between the various transformations

to be applied (where the more preferred transformation are applied first). This

ordering between the transformation are determined through a user subject

study.530

3.4. Explanatory Witness

Even after providing the model, the user may not be able to reason about

the explanatory property on their own and, as such, may require additional

assistance. We will refer to such information as Explanatory Witness. XAI

literature includes many examples of such information, and in fact, many works535

focus on identifying such information while making implicit assumptions about

the model information with which the user is supposed to make sense of this

information. In general, from the current literature, we can identify three

categories of such information;

1. Proof of explanatory properties: A proof of the property being explained,540

which in our case can be provided in the minimal model. Though un-

fortunately, it is very hard to create exact interpretable proofs for most

query properties. In general, most of these proofs would be incomplete or

abstract in the sense of skipping some steps. An example of such abstract

explanatory witnesses would be the use of Q-values to contrast the current545
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choice against alternative (as in the case of [21]). Here the explanatory

witness doesn’t provide information as to why the current action in a state

or the alternative has a specific Q-value.

2. Existential Information: This corresponds to presenting instances of po-

tential solutions (plan/policies) or parts of solutions (a specific execution550

trace from a given policy) that acts as a demonstration of the property

being explained. Once such an example is selected, the example could then

be contrasted with the original solution and the information presented to

the user.

3. Counterfactual Information: In the final category, the user is provided555

with examples of counterfactual solutions and even planning models where

the property being explained isn’t satisfied. The assumption is that these

examples would help humans get a better sense of when the property might

not be satisfied.

While generating explanations for user studies we will use a sampled policy560

execution trace as the corresponding Explanatory Witness (a type of existential

information). For example, when trying to explain why the cost of a policy may

be above some threshold, then one could find a specific execution trace, i.e., a

sequence of states, actions and resulting state that can be sampled from the

current policy and show that the cost of that trace is above the current threshold.565

This is a particularly appealing for criteria involving cost. For criteria related

to goal reachability, possible explanatory witness include the use of qualitative

occupancy frequency (similar to [22]) and for unsolvability one could present the

infeasibility of some example paths to the goal (as in the case of [23]).

Section 8 includes a discussion of existing types of explanatory witnesses studied570

in the literature.

3.5. Generating Explanations

With these basic definitions in place, we can describe the actual approach to

generating the explanations.
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The first component, we will need to consider is a way to identify an ex-575

planatory criteria. It should be clear that for any given explanatory query, there

might be multiple possible explanatory criteria, especially ones that use different

optimization metrics. However, given the fact that there exists a strict ordering

between the optimization metrics, we will generally prefer explanatory criteria

related to the criterion with the higher preference. We will denote the fact that580

the explanatory criteria κi is preferred over a property κj , by using the notation

κi ≺ κi. In our setting, a reachability related criteria is preferred over those

related to cost. This means that one could test whether we can use goal reaching

probability of the fact policy to derive an explanatory criteria, if not switch to a

cost based one (again the threshold is set by the cost function associated with585

the fact policy).

Once the most preferred explanatory criterion is identified, our next challenge

is to determine the most simplified model where the criterion can still be

established.

Definition 12. Given a modelMR∗
, a set of universally sound transformation590

functions F = {F1, ...,Fk}, the problem of generating a minimal explanatory

model for a given explanatory criterion κ, corresponds to the problem of finding

a sequence of transformation Tmin which results in a simplified representationM

that is sound for κ and there exists no other sequence of model transformations

that will result in a simpler yet sound representation, i.e,595

̸ ∃T ′ CompH(Tmin(MR∗
), κ) > CompH(T ′(MR∗

), κ)

The new model Tmin(MR∗
) will form the basis of the explanation.

The basic algorithm for generating such minimal explanations is given in

Algorithm 1, which correspond to an exhaustive search over all possible transfor-

mations and then returning the transformation sequence, explanatory criterion

pair that meets the requirements provided in Definition 12.600

Note that the above algorithm is an extremely computationally expensive one.

The search space is exponential over the number of transformations possible and

each search node evaluation in our case consists of solving a planning problem.
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Algorithm 1 Basic Search

1: procedure search

2: Input : MR∗
,F, κ

3: Output : The transformed modelM

4: Procedure:

5: Tbest = ⟨⟩

6: Curr Minimal Effort ←∞

7: for Each subsequence T ′ of F do

8: Comp Effort ← CompH(T ′(MR∗
), κ)

9: if Curr Minimal Effort > Comp Effort then

10: Tbest = T ′

return Tbest(MR∗
)

However, as we will see in Section 6 by making commitments on the types

of transformation and model classes, we can make use of a significantly more605

efficient search algorithm.

As for generating the explanatory witness, once we have identified the minimal

explanatory model, one can use any of the methods outlined in Section 3.4 to

generate an appropriate explanatory witness.

4. Queries and Explanations610

Figure 3 presents the hierarchy of questions possible in this problem setting

organized into two categories. Now for each type, we further list two possible

subcategories. The first category corresponds to queries exclusively about the

current best solution provided by the system and the second corresponds to

queries that contrast the current policy with an alternative the human had in615

their mind. In the former, the user would want to understand why the solution

is worse off than what they were expecting (say in terms of goal reachability or

cost), and in the latter, the user would want to know how the current policy

compares against the alternative they had in mind. In the end, both categories
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Figure 3: A hierarchy of Why questions that can be asked by a user trying to understand

decisions generated by an automated decision-maker using an undiscounted MDP that meets

the P Assumption.
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can be mapped into a question that can be resolved by comparing a policy620

against a threshold. In the case of the former category, the threshold directly

comes from the user’s question and the system’s policy is compared against it (for

example, the kind of questions that might fall into this category would include

instances like Why does the policy cost more than X? or Why is the likelihood of

reaching the goal less than Y?), while in the latter the alternative posed by the625

user is compared against the cost or goal reachability of the current policy. In

the end, the query hierarchy concretizes into three specific query types.

Each query type is characterized by a specific explanatory criteria,

1. κϵ1 is satisfied when there exists no policy that has a cost less than a

certain threshold for the initial state under the model630

2. κϵ2 is satisfied when no policy achieves the goal from the initial state with

non-zero probability

3. κϵ3 is satisfied when there exists no policy whose probability of achieving

the goal from the initial state is above a certain threshold.

These criterion classes correspond to a large set of specific explanatory criteria635

and the exact threshold is determined by the specific query. For a specific model

M and a threshold X, we will denote the fact that an instance of the criterion

class κ is satisfied for the threshold asM |= κ(X) (in the case of κϵ2 X is limited

to 0).

In the categorization, we have split the queries related to goal reachability640

into two distinct categories, even though, one could specify it as a comparison

to a threshold. The reason why we chose not to do that, is two-fold;

1. Not only are queries about unsolvability a natural and commonly studied

explanatory query type [24], they are also a lot more accessible and more

likely to be used by non-experts who may not be aware of or comfortable645

with the exact probability associated with the planning problem.

2. One can apply many more explanatory techniques to answer questions

related to solvability, which is not necessarily applicable to questions that

use direct comparison to probability threshold. For example, as we will see,
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the use of determinization or even the use of models with purely qualitative650

non-determinism is possible to answer queries related to solvability but

doesn’t apply to queries that explicitly use probabilistic thresholds.

Any possible contrastive query, which can be answered by a decision-making

system, would correspond to one of these explanatory criteria. Following the

conventions generally used in MDP solution strategies, we will establish a strict655

ordering between the criteria, namely, κϵ1 ≺ κϵ2 ≺ κϵ3 .

5. Model Transformation Classes

In this section, we will look at some specific transformation classes. The

classes were selected based on the fact that some restricted forms of these

transformations were already studied in the wider XAI literature. In particular,660

Section 5.1 presents projective state abstraction (FF\Λ); Section 5.2 presents

determinization (F∆); Section 5.3 covers problem decomposition (FD) and Section

5.4 local approximation (FL).

5.1. State Abstractions

The first transformation we could make use of is state abstraction that can665

help reduce the underlying state space of the MDP [25], which has been used

for explaining deterministic plans [26] and to summarize policies as in [27]. In

particular, we will consider state aggregations that replace a set of states in the

underlying MDPMR∗
with a single state [28]. In Example 1, it will be a state

abstraction that will let us ignore most of the state variables, including those670

related to motion-level constraints. We will define state abstraction as

Definition 13. For a given modelM = ⟨S,A, I, P, C,G⟩, M̃ = ⟨S̃, Ã, Ĩ, P̃ , C̃, G̃⟩

is said to be an abstraction ofM, if there exists a surjective mapping from states

and actions in M to M̃ (where F be the mapping), then ∀s1, s2 ∈ S and for

any a ∈ A, if P (s1, a, s2) > 0, then P (F(s1),F(a),F(s2)) > 0.675

While state abstraction has been a popular topic of investigation in MDP

planning/RL topics. We are particularly interested in its use to create sound
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Figure 4: A diagrammatic representation of the transformation induced by the abstraction

function on the transition probabilities. Here the projection operation causes the states s2 and

s3 to collapse into a single state s2′.

representation for all the queries. Since we are looking at symbolic representation,

it would be useful to have methods that create abstractions that are valid symbolic

models. Specifically, we can make use of syntactic projections of the model680

descriptions, which have previously been used for generating heuristics [29].

5.1.1. State Abstractions Through Syntactic Projection

We will define the transformation as

Definition 14. For a given model descriptionMD = ⟨FD, AD, ID, GD⟩ and a

set of propositions Λ ⊆ FD the syntactic projection (represented as a function685

FF\Λ) results in a new model description FF\Λ(MD) = ⟨FD \ Λ, AFF\Λ , ID \

Λ, GD \ Λ⟩. Where the new actions AF
F\Λ is given as follows: for each ai ∈

AD, there existing a corresponding action FF\Λ(ai) = ⟨preci \ Λ⟩ (To simplify

discussion we will be overloading the notation FF\Λ to stand for any mapping

from the components of the original model or description to those in the new690

model)

FF\Λ(Ei) = {⟨addji \ Λ,del
j
i \ Λ, p

′, c′⟩| ⟨addji ,del
j
i , p

j
i , c

i
j⟩ ∈ Ei} (1)
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Where the new probability of the effect p′ is given as

p′ =
∑

⟨addk
i ,del

k
i ,p

k
i ,c

k
i ⟩∈Ei ,where addk

i \Λ=addj
i\Λ and delki \Λ=delji\Λ

pki

c′ = min{cki |⟨add
k
i ,del

k
i , p

k
i , c

k
i ⟩ ∈ Ei

,where addki \ Λ = addji \ Λ and delki \ Λ = delji}}

(2)

So effectively the transformation removes every appearance of a fluent being

projected out from the description, and if this results in mutually exclusive effects

to be duplicated (including being empty), then only one version of the effect is695

included in the updated model, the probability of this effect becomes the sum of

the individual effects and the cost of this effect becomes the minimum of the

original effects. Figure 4, present a visual representation of the transformation.

Proposition 1. One could create the transformed model description FF\Λ(MD),

in time polynomial over the size of the original model description and the number700

of factors in Λ.

This complexity should be clear from the fact that one could do it by making

two passes through the domain model. Once to remove the fluents in Λ and the

second to merge duplicate effects. Now we will see that the MDP corresponding

to updated model description FF\Λ(MD), is in fact a valid state abstraction.705

Proposition 2. The modelMFF\Λ represented by FF\Λ(MD) is a state ab-

straction (per Definition 13) of the model M. Additionally, for any states

i, j ∈ S for MDP M, then P (i, amdp
ai

, j) ≤ PFF\Λ(FF\Λ(i), a
mdp
FF\Λ(ai)

,FF\Λ(j))

and C(i, a, j) ≥ CFF\Λ(FF\Λ(i), a
mdp
FF\Λ(ai)

,FF\Λ(j)), for states FF\Λ(i) and

FF\Λ(j) inMFF\Λ .710

Proof Sketch. First off FF\Λ(MD) is a well formed model description, so there

exists a unique modelMFF\Λ induced by it. The surjective mapping from state

space S of M to SFF\Λ (Overloading the notation a bit, we will use FF\Λ to

also capture this mapping) is given as

FF\Λ(i) = î if ŝi = si \ Λ
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It should be easy to verify that this is in fact a surjective function. The715

relationship between the probability functions and cost functions comes directly

as a result of the transformation.

We can use the abstraction function to also define a relation among the

states in the model description, such that si ∼FF\Λ sj , if FF\Λ(si) = FF\Λ(sj).

Note that this is an equivalent relation and thus helps partition the state space720

into disjoint sets that map into the same abstract. If ŝi is an abstract state for

FF\Λ(M), then we will use the notation F−
F\Λ1(ŝi) to capture the quotient set

for the relation ∼FF\Λ that maps the state from the concrete model into the

abstract state ŝi, i.e.,

F−1
F\Λ(s) = {s

′|FF\Λ(s
′) = s}

Unless specified otherwise, the cost function for the concrete model are725

denoted as functions over just state indexes (for example J(i)), while that for

the abstract model it is denoted with states where an abstraction function has

been applied (for example J(FF\Λ(i))).

Next we will detail some simple properties of the model and demonstrate the

central properties we can use for explanation.730

This takes us to the next result

Proposition 3. Probability of a trace (a sequence of action control state tuples)

from a given state to a goal state is either preserved or increases over the

transformation, i.e., for a trace t = ⟨s1, a1, ..., sk⟩, PFF\Λ(M)(t) ≥ PM(t).

The result follows from earlier proposition.735

Proposition 4. Probability of an action causing a transition from an abstract

state î to another abstract state ĵ, is equal to the sum of the probability of

transitions from one of the states in F−1
F\Λ(̂i) to all the states in F−1

F\Λ(ĵ) under

that action.

The result follows from the fact that given the declaration method, all the740

states that merged must have had similar effects, so the choice of the state
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F−1
F\Λ(̂i) doesn’t matter. The second part of the proposition follows from the

transformation itself.

With this transformation in hand, we can show that the syntactic transforma-

tion results in a state aggregation. We can now show the optimal cost function745

in the new model is lower than that of the original model.

Lemma 1. For every state i in the modelM, J∗(i) ≥ J∗
FF\Λ

(FF\Λ(i)), where

J∗
FF\Λ

is the optimal cost function forMFF\Λ .

Proof Sketch. We can show this by initializing a cost function for the abstract

model JFF\Λ with cost from J∗, such that for any abstract state î as JFF\Λ (̂i) =750

mini∈F−1
F\Λ (̂i)(J

∗(i)). If we now apply a bellman operator T , given propositions

2 and 4, we will have

TJFF\Λ (̂i) ≤ JFF\Λ (̂i)

For P condition the bellman operator is still monotonic function [3], and converges

to the optimal cost function. Thus the optimal cost function for FF\Λ(i) must

be less than or equal to J∗(i).755

Next, in regard to the probability, we can establish that

Lemma 2. For every state i in the modelM, P ∗(i) ≤ P ∗
FF\Λ

(FF\Λ(i))), where

P ∗
FF\Λ

is the maxprob probability for the modelMFF\Λ .

This result directly follows from Proposition 3 (a similar result was also

established in [29]). With these two propositions we have established that state760

abstraction does in fact result in new models that underapproximated cost and

overapproximates reachability. Thus establishing that the syntactic projection

described here results in a valid state abstraction per Definition 13 and the

resultant transformation is sound with respect to all three explanatory criteria.

Theorem 1. The domain description transformation FF\Λ corresponds to a765

universally sound transformation for any model that can be represented by a

model description of the formMD = ⟨FD, AD, ID, GD, CD⟩.
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In Example 1, consider the original probabilistic effects of the mixing action,

which says after mixing, you might have cake batter with a probability of 0.5, a

cake batter with bubbles in it with a probability of 0.25, and with a probability of770

0.25, no cake batter at all.

(probabilistic 1/2 (and (has-cake-batter))

1/4 (and (has-cake-batter)

(cake-batter-has-bubbles)))

After projecting out (cake-batter-has-bubbles) you get an effect that says the775

probability of having cake batter is 0.75

(probabilistic 3/4 (and (has-cake-batter)))

5.2. Problem Determinization

Note that the abstraction operation creates models with probabilistic effects

unless the effects merge into a single effect. At least for some of the queries, the780

system could generate valid responses while using an optimistic determinization

of the model that ignores all stochasticity of the model. For example, in Example

1 even if there were no undesired side-effects due to stochasticity (the 0.25

probability of the mixing action not forming a cake batter), the mix action could

still not be executed as it has a missing precondition (has-cake-whisk). One785

possible way to create such optimistic determinization could be to generate a

new model where action with multiple stochastic effects is turned into multiple

actions with deterministic effects. Determinization belongs to a larger class of

transformations (which we will refer to as problem class simplification) that

transforms the original problem to simpler decision-making problems for the790

sake of generating explanations. While there are some instances of problem class

simplification for explanations for multi-objective explanations (cf. [30]), we are

unaware of any direct use of determinization to simplify explanations.

5.2.1. All Outcome Determinization

Definition 15. MD = ⟨FD, AD, ID, GD⟩ a determinization is presented by an795

operator F∆ and generates a new model of the form F∆(MD) = ⟨FD,F∆(AD), ID, GD⟩.
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Where for every ai = ⟨preci, {e1i , ..., eki }⟩, there exists k actions in F∆(AD) such

that aji = ⟨preci, add
j
i , del

j
i , 1, c

j
i ⟩, i.e., it generate the jth effect with probability

1.

Such determinization operations are sometimes referred to as all outcome800

determinization [31]. Which is also closely connected to hindsight optimization

techniques that have been studied in multiple fields including control theory [32].

The transformation could be used for both cost criterion (κϵ1) and solvability

criterion (κϵ2). Also note that for the class of models considered in this paper

the transformation of the model description can be carried out effectively.805

Proposition 5. The transformed model description F∆(MD) can be created by

performing a single pass through the original descriptionMD and the maximum

number of actions in F∆(MD) is upper-bounded by K × |A|, where K is the

maximum number of mutually exclusive effects that can appear in an action

definition in A.810

The fundamental property of this determinization we can use here is the

following

Proposition 6. Let τ = ⟨I, a1, ...., ak, g⟩ be the sequence of symbolic states and

actions corresponding to a trace from the initial state to a goal state g ∈ G with

non-zero probability for the model defined by the descriptionMD. Then A(τ)815

(the sequence of actions appearing in τ) is a valid plan for the deterministic

planning model F∆. That is when the sequence A(τ) is executed in I it will

take you to the state g.

This property directly comes from the form of the transformation is widely

established in the determinization literature.820

Lemma 3. The cost of best possible plan in F∆(MD) is guaranteed to be less

than or equal to J∗(I) for the modelM corresponding toMD

After all the lowest cost trace that can be sampled from any policy is a plan

in the determinized model. As the cost of the policy should be higher than the

33



cost of its lowest cost trace, it should be higher than the cost of the optimal825

plan in F∆(MD).

Lemma 4. If the problem F∆(MD) is unsolvable then P ∗(I) = 0.

This follows directly from Proposition 6.

With Lemma 3 and 4 in place should be clear that this transformation could

be used for both cost criteria (κϵ1) and solvability criteria (κϵ2). One can actually830

in fact make a stronger claim and show that it is even sound for (κϵ3).

Theorem 2. The domain description transformation F∆ corresponds to a

universally sound transformation for any model that can be represented by a

model description of the formMD = ⟨FD, AD, ID, GD, CD⟩

Proof. As mentioned earlier the soundness of the first two properties directly835

follow the earlier Lemmas. To see the soundness with respect to κϵ3 , note that

F∆(MD) is a well formed PPDDL model description, but one that only allows

for deterministic transition. So in this model the maxprob probability must

be either 1 or 0. This means that the only threshold for which κϵ3 can be

meaningfully established in the updated model is for threshold 0 (discounting 1840

as it as κϵ3 for threshold 1 a tautological statement). κϵ3 limited to threshold 0

corresponds to κϵ2 , which per our earlier discussion the transformation F∆ is

already sound for. Thus establishing the fact that F∆ is universally sound.

With regards to Example 1, such transformation will allow us to ignore the

probability of mix action failure when giving the explanation. In particular, we845

will have two new mixing actions. One with effect (has-cake-batter) and the other

with effect (and (has-cake-batter) (cake-batter-has-bubbles)).

5.3. Problem Decomposition

Even after applying all the above transformations, the plans generated from

the resultant model could be extremely long. One way to address would be850

to decompose the original task into smaller subtasks. In Example 1, rather

than talking about the problem of baking cake it can focus just on explaining the
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subproblem of making the cake batter. In this section, we introduce problem

decomposition with respect to an initial state that focuses on subproblems that

reuse states and actions of the original problem and is either cheaper or it is855

easier to achieve the goal

Definition 16. Given an atomic MDPM = ⟨S,A, P, I, C,G⟩ with an optimal

cost J∗, an MDPM′
= ⟨S,A, P, I, C,G′⟩ with an optimal cost J ′, is said to be

a subproblem if it is guaranteed that J ′(I) ≤ J∗(I) (where the decomposition is

called cost based decomposition) or P ′(I) ≤ P ∗(I) (where the decomposition is860

called reachability-based decomposition).

For queries related to κϵ1 if we can establish that the cost of the subproblem

under cost-based decomposition is greater than the limit, then that automatically

establishes that the original problem should be worse. For queries related

to reachability, we can look for similar arguments for a subproblem under865

reachability-based decomposition. Now the question is how can we find such

decompositions.

5.3.1. Subgoals

For goal-directed problems with an initial state, a natural idea could be

subgoals, where subgoals are representations of intermediate states that the870

policy may need to achieve before getting to the final goal. A specific subgoal

that could be useful here is landmarks, which were recently adapted for SSPs by

[33]. These are propositional facts that need to be satisfied by any path from the

initial state to goal with non-zero probability. While that paper introduced these

facts as a way to summarize policies, we use them to decompose problems and875

form simpler problems. Such landmarks can be automatically extracted from the

model descriptionMD∗
. For unsolvable problems, such landmarks could also be

generated from abstractions of the problem where the goal is reachable (cf. [24]).

In Example 1, has-cake-batter is a landmark for the goal bake-cake. A problem

decomposition using landmarks as the new goal is both a cost and reachability880

decomposition and is sound for all three explanatory criteria.
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Lemma 5. If f ∈ FD is a fact landmark for the MDP corresponding MD =

⟨FD, AD, ID, GD⟩, then the model FD(MD) = ⟨FD, AD, ID, f⟩ is both a cost-

based decomposition and probability-based decomposition. In other words, J∗
FD

(I) ≤

J∗(I) and P ∗
FD

(I) ≤ P ∗(I), where J∗
FD

and P ∗
FD

are the optimal cost function885

and MAXPROB probabilities for the model corresponding to the description

FD(MD).

Proof Sketch. Let τ = ⟨I, a1, ...., ak, g⟩ be the sequence of symbolic states and

actions corresponding to a trace from the initial state to a goal state g ∈ G with

non-zero probability for the model defined by the descriptionMD. From the890

definition of landmarks, we know that there must be state sf in the sequence

τ such that f ∈ sf . Therefore any trace with nonzero probability can be

decomposed into a prefix corresponding to the sequence that leads to a landmark

state and then the sequence from landmark state to the final goal. Additionally

we can see that the probability of this trace prefix must be greater than or equal895

to the probability of the full trace. Thus for all the traces sampled from a given

policy the total probability of getting to all landmarks states must be higher

than that of reaching the final goal. We can use a similar reasoning to show that

the total expected cost of reaching the landmark states must be less than or

equal to the cost of reaching the final goal state.900

The above lemma establishes the fact that problem decomposition through

landmarks underapproximates costs and overapproximates reachability, thus its

valid for all three explanatory criteria.

Theorem 3. The domain description transformation FD corresponds to a

universally sound transformation for any model that can be represented by a905

model description of the formMD = ⟨FD, AD, ID, GD, CD⟩

Now coming to the complexity of the transformation, once given a fact

landmark the model transformation can be performed quite effectively.

Proposition 7. For a given fact landmark f and a model descriptionMD, the

domain description transformation FD can be performed in constant time.910
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This is because you just need to replace the goal description inMD to form

the transformed description. Now coming to the complexity of generating a

landmark, the problem of finding landmark in general is PSPACE-Complete [34].

However, there are classes of landmarks which can be generated more effectively.

One class of such landmarks is the causal landmarks which can be generated in915

time polynomial to the size of the model description [35].

For the example, after this transformation the goal condition of the model

description will be changed from (bake-cake) to (has-cake-batter).

5.4. Local Approximation

The next transformation we will consider is that of local approximations.920

Local approximations [36], have been successfully used in the context of explaining

machine learning decisions. The basic premise being that the model being used

for explanation need not accurately reflect the entire decision-space, but only

the parts that are relevant to the current query. One could translate the same

intuition into the sequential decision-making settings, and look at creating925

simpler representations of the model that focus only on a part of the transition

system. Revisiting Example 1, through local approximation we can establish the

facts that the robot doesn’t need to talk about any of its skills unrelated to cooking

or baking cakes. Based on the fact that it is in a home, it can also figure out

that it can skip providing any information to the user about it’s ability to use930

industrial mixers to make cake batter.

We can describe a local approximation (represented by the transformation

FL) for a set of states Ŝ and a set of actions Â as a function that generates a

new model that conserves the transition probabilities and cost functions related

to states and actions that appear in Ŝ and Â.935

Definition 17. For a given model M = ⟨S,A, P,C, I,G⟩ and a subset of

states and actions Ŝ ⊆ S and Â ⊆ A, a well formed MDP model M′ =

⟨S′, A′, P ′, C ′, I ′, G′⟩, is said to be a local approximation (denoted as FL(M) =

M′) if there exists a mapping from Ŝ to S′ and from Â to A′ (with a slight

abuse of notation we will use fL for both the state to state and action to action940
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mapping), such that for any given states i, j ∈ Ŝ and an action a ∈ Â, we

have P (i, a, j) = P ′(fL(i), fL(a)), fL(j)), C(i, a, j) = C ′(fL(i), fL(a), fL(j)) and

there exists a mapping from Ŝ ∩G to G′.

This is a very permissive definition and not all instantiation of the transfor-

mation would necessarily lead to transformations that would lead us to ones945

that may preserve explanatory criteria. So before, we consider an instance of

the transformation, let us consider a specific subclass of the transformation, one

that focuses on cases where the subset of states and actions consider form a

closed transition system ,i.e., all states reachable from Ŝ under the policy is a

subset of Ŝ950

Definition 18. A set of states Ŝ and set of actions Â, is said to be closed for

a policy π, if

1. Execution policy in Ŝ, will never lead to a transition to a state outside the

set, i.e., ∀j ∈ S \ Ŝ ̸ ∃i ∈ Ŝ and a ∈ â such that P (i, a, j) > 0

2. The set Â covers all actions assigned to states in Ŝ, under the policy π,955

i.e., ∀i ∈ Ŝ, π(i) ∈ Â

We will now see how any local transformation defined over a closed set, will

result in universally sound transformation. More formally, we can state this as;

Proposition 8. If the sets Ŝ and Â are closed for a policy π, then ∀i ∈

Ŝ, J ′∗(fL(i)) ≤ Jπ(i) and P ′∗(fL(i)) ≥ P ∗(i), where J ′∗ and P ′∗ are the optimal960

cost function and the maxprob probability for the model FL(M).

Proof sketch. This follows directly from the fact that the transformation intro-

duces no new transitions for states and actions that are part of the set Â and

Ŝ. Moreover the transformation conserves both cost and probabilities for those

states and actions. This means there exists multiple policies for FL(M) which965

has the same value and probability for states in Ŝ as the original policy π. This

means the optimal policy and maxprob policy should lead to policy that are

more cheaper and with higher likelihood of getting the goal. Note that this
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doesn’t need to be equal as the local approximations allows for the fact that

there may be new actions now applicable in the states that are part of Ŝ.970

Proposition 8 ensures that local approximation results in models that under-

approximates costs and overapproximates reachability and we can now state the

primary theorem related to FL.

Theorem 4. The transformation FL for the given sets Ŝ and Â is a universally

sound transformation for a modelM, if,975

1. Ŝ and Â are closed with respect to an optimal policy and a MAXPROB

policy.

2. I ∈ Ŝ and FL(I) = I ′, where I ′ is the new initial state in the model

FL(M).

The fact that the initial state is in Ŝ (and its corresponding image remains980

the new initial state) and that it satisfies the requirement for Proposition 8

means that all three explanation criteria κϵ1 , κϵ2 , and κϵ3 .

5.4.1. Reachability Analysis For Local Approximation

One way to create a local approximation is to perform a reachability analysis

to remove actions and fluents guaranteed to be not reachable from the initial985

state. To identify the non-reachable fluents, we will consider the delete-relaxation

of the all outcome determinization of the original model and try to identify the

reachable fluents and actions by building a relaxed planning graph [37]. The

fluents and actions not present in the planning graph are removed from the

model description. We will refer to the model description formed through this990

procedure as F+
L (MD), where + denotes the fact that the local approximation

relies on a delete relaxation of the model. First thing to note is that F+
L , can be

formed rather efficiently. In particular, we have

Proposition 9. The new model description F+
L (MD) can be created in time

polynomial to the size of the original model descriptionMD.995
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Proof. This follows from the fact that an all outcome determinization can be

generated in polynomial time. The formation of the relaxed planning graph

and subsequent identification of unreachable fluents and actions can again be

performed in time polynomial to the size of the determinized model. With the

fluents and actions to be removed identified, one can form the model description1000

F+
L (MD) again in polynomial time.

Now the fact we need to show is that this model description transformation

actually correspond to a local approximation for a certain subset of states and

actions and moreover this approximation meets the requirements for Theorem 4.

In particularly we will see that the transformation will create a local approxi-1005

mation defined over the original MDP where the subset of states and actions

considered correspond to set of states that can be formed by the remaining fluent

and remaining actions and it is in fact closed. More formally, we can state

Proposition 10. LetM be the model corresponding to the descriptionMD

and let F+
L (MD) = ⟨F̂D, ÂD, ID, GD, CD⟩ be the newly formed transformed1010

model such that, F̂D ⊆ FD and ÂD ⊆ AD. Then the MDPM′ corresponding

to the description F+
L (MD) is a local approximation of the modelM, defined

over the state and action subset Ŝ and Â, such that

1. Ŝ corresponds to the state defined by 2|F̂
D| and Â correspond to actions

in ÂD (both of which are subsets of S and A for the modelM)1015

2. Ŝ and Â meets the requirements specified in Theorem 4

Proof Sketch. Note that the mapping here is an identity mapping from states

and actions in Ŝ and Â to those in the modelM′. From the construction of the

relaxed planning graph, every fluent that is true in initial state will be conserved

and thus I must be part of Ŝ. The fact that Ŝ and Â are closed comes from the1020

fact that we are considering a delete relaxation of an all outcome determinization.

This means if the process removes a state from consideration (i.e. removes a

fluent f that is part of the state), then there exists no non-zero probability

trace that can reach that state from the initial state. Thus the states are closed
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under any policy not just optimal or MAXPROB ones. Similarly for actions,1025

the procedure will never remove any action that is applicable for a state that is

part of Ŝ and thus must be closed.

Proposition 10 thus establishes the fact that F+
L also corresponds to a univer-

sally sound transformation.

With regards to Example 1, such transformation will allow us to ignore an1030

action mix-with-industrial-mixer if it has a precondition (in-cake-factory), which can

never be made true in this case. As such, the delete-relaxed graph will never

allow for the application of this action.

6. Using Stratified Model Transformation Search to Compute Expla-

nations1035

Now let us return back to the question of how to effectively generate the

transformation sequences. Even if we limit our transformation classes to the

one we discussed in Section 5, a search for the minimal transformation sequence

using Algorithm 1 would be an expensive problem. For one the search space

could be large and even if one were to introduce a more informed version of1040

the search any search heuristic we employ will have to compute the effect of a

transformation on the computational hardness of the problem. A more useful

approach may be to set up a hard priority between the transformation classes.

If we are able to set a primary transformation class, then we can directly try

to find the maximal number of transformations we can apply from that class.1045

The other transformations need only be considered to the degree that they can

be applied to the models generated by applying a maximal sequence of primary

transformations possible. From a computational point of view, an excellent

candidate for primary transformation might be state abstractions. After all,

removing each binary state fluent always reduces the state space by half. Among1050

the most abstract models that support the given explanatory query, we can look

at applying the other transformations provided they can conserve the criterion

being established.
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However, one could also additionally exploit the specifics of the transforma-

tions to get additional improvement in search. Starting with state abstraction1055

transformation (FF\·), there are two immediate properties we can exploit, namely

the fact that the transformation is commutative and compositional, or more

formally

Proposition 11. For any modelMD and for any proposition set F̂1 ⊆ F and

F̂2 ⊆ F , we have1060

1. FF\F̂1
(FF\F̂2

(MD)) and FF\F̂2
(FF\F̂1

(MD), i.e. the state abstraction

transformation is commutative

2. FF\F̂1
(FF\F̂2

(MD) and FF\(F̂1∪F̂2)
(MD), i.e. the state abstraction trans-

formation is compositional

Proposition 11 follows directly from the definition and implies that we can1065

apply state abstraction one fluent at a time and can be applied in any order.

Next moving onto the next three transformations, we see another fascinat-

ing property. Namely that the order in which the determinization (F∆) and

subgoal decomposition (FD) is applied doesn’t matter. Similarly, the applying

determinization and local approximation via reachability analyses (F+
L ) in any1070

order also results in the same model. However, applying local approximation

after subgoal decomposition is always guaranteed to result in removal of more

elements, more formally,

Proposition 12. For any modelMD

1. F∆(FD(MD)) = FD(F∆(MD)) and F∆(F+
L (MD)) = F+

L (F∆(MD))1075

2. If M ′ = F+
L (FD(MD)), M

′′
= FD(F+

L (MD)), then we can guarantee that

F ′ ⊆ F
′′
and A′ ⊆ A

′′
.

Proof. The first result follows from the facts that (a) determinization will not

change the goal description and subgoal decomposition only changes the goal

description and thus are independent of each other and (b) the reachability is1080

already calculated on an all outcome determinization of the model. For the
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second result, remember that the relaxed planning graph is always only built

until the goal is achieved, as such using a subgoal that is easier to reach could

let us prune out more actions and fluents.

Algorithm 2 presents the pseudo-code for the stratified search introduced in1085

the main paper. The algorithm starts with the most abstract model (which only

includes the goal fluents) and then searches for the minimal number of fluents

to be introduced into the model so that the query criterion κ is satisfied. Let

Compsys be the computational proxy we are using. The successor procedure

will only consider generating a model generated through non-concretization1090

transformation (i.e. transformation that adds new fluents in the model) if the

number of fluents in the model is equal to Abs min and the criterion is satisfied

by the model. Abs min starts initialized to the total number of fluents in the

original model, but as soon as an abstract model is found then Abs min gets

set to the number of fluents in the model. After that, the search will keep1095

concretizing the models to the same level of abstraction (in terms of the number

of fluents) and then try to see if further transformations can be applied while

maintaining the criterion being explained.

7. Evaluation

7.1. User Study1100

We performed an ablation study to establish the effectiveness of individual

transformations to help users understand the explanation.

Study Objective: Our primary objective with the study is twofold: first, to establish

the fact that using model simplification via the framework we introduce is a way

to generate explanations that are easier to understand. Secondly, we want to help1105

identify the utility provided by each individual of the four transformation classes.

For the primary objective, we will compare how the users deal with an explanation

where simplifying model transformations are applied as opposed to one where

the entire model is given to the user. We will compare the effectiveness of an

explanation defined over a model containing all four transformations against1110
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Algorithm 2 Stratified Search

1: procedure search

2: Input : MD, κ,F, C

3: Output : Updated model description M̂D

4: Procedure:

5: λ = FD \GD

6: curr model = FF\λ(MD)

7: Fringe.push(curr model) (Where Fringe is a Queue)

8: Cmin =∞

9: Abs min = |FD|

10: while Fringe is not empty do

11: curr model = Fringe.pop()

12: Criterion satisfied = False

13: if test criterion(curr model,κ) then

14: Criterion satisfied = True

15: if Abs min is less than number of fluents in curr model then

16: set Abs min to number of fluents in curr model

17: Cnew = CompH(curr model, κ)

18: if Cmin > Cnew then

19: Cmin = Cnew
20: best model = curr model

21: Fringe.push(successor(curr model, F, Abs min, Criterion satisfied))

22: if test criterion(F∆(best model)), κ) then

23: best model ← F∆(best model)

24: if test criterion(FD(best model)) then

25: best model ← FD(best model)

26: if test criterion(F+
L (best model)), κ) then

27: best model ← F+
L (best model)

return best model
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all -determin -locl-apprx -decomp -abs None

# Filtered 27 27 27 24 24 21

% satisfac-

tion

85.18 81.48 81.48 66.66 66.66 90.47

Participants

with correct

answers

22 23 24 17 20 18

Avg Time

Taken

237.59 ∓26 281.45∓48 369.65∓66 249.06 ∓40 299.6∓46 393.78 ∓71

T-test

against all

- 0.096 0.0022 0.343 0.0288 0.00042

Table 1: Summary of user study results. Average time reported is with 95% confidence interval.

Last row reports the p-value calculated from a two tailed homoscedastic T-test.

one where one of the transformation operations is missing. For the secondary

objective, we will test how the removal of any single transformation affects the

overall effectiveness of the explanations. We recruited a total of 180 participants

through Prolific [38]. The participants were paid $3.30 for 15 minutes. The

study took the form of a timed quiz (the quiz is automatically submitted at 151115

minutes) where they read an explanatory dialogue and were asked to answer

questions related to the explanation. There was also a bonus of $5 offered to the

top two fastest participants from a group who get all the answers right (thus

ensuring that people optimize for both completion time and correctness). We

required that the participants be fluent in English and it was their first language.1120

For the maximum education degree completed: 30% of all the participants who

attempted the test (including those who dropped out in the middle) reported

having a Bachelor’s degree, 18% a high school degree, 17% having some college

credits, and 15% having a master’s degree. In the group corresponding to

all-but-determinization, 88% of participants reported that they understood1125

probabilities. The study was performed on a simple travel planning domain,

where the goal is to let the person board a flight. The domain consists of

11 actions, four of which have stochastic effects. We start with a model that

contains all the transformations (identified by running an exhaustive search over

the transformation space while using the same solvers as in Section 7.2 as proxies1130
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for CompH(,)). It projects out all but six propositional fluents, has a subgoal

of getting to the terminal, is determinized, and uses a regression-based local-

approximation method to prune out actions that can’t possibly contribute to the

goal of getting to the terminal. The actual explanatory dialogue consists of a

system stating the estimated time taken to reach the final destination (time being1135

a stand-in for cost) and the user in the dialogue asking why it can’t be done in an

hour. The explanation consists of a description of the corresponding simplified

model (generated by filling templates with descriptions of the propositions) and a

single execution trace as the explanatory witness. The user is asked to read this

dialogue and asked to answer a series of questions. Two questions of particular1140

interest are a filter question that just checks whether the participant read the

instructions and then a question that tests whether the user understood the

explanation, by asking how they could speed up the travel plan. For the second

question, the participant was given five options, only two of which are correct

answers. One of which requires the participant to understand the current plan1145

and the second requires them to reason about an alternate initial state. We

ignored any participant who got the filter question wrong or whose quizzes timed

out. The description of all the models can be found in Appendix A2.

The six conditions we considered were

1. all - A condition consisting of a model that includes all four transformations,1150

here the main explanatory text (model description plus explanatory witness)

included 1493 characters.

2. all-but-determinization - as the name suggests, all transformations

except determinization are applied; the explanatory text included 1805

characters.1155

3. all-but-local-approximation - the explanatory text includes 2274 char-

acters.

4. all-but-decomposition - the explanatory text includes 2429 characters.

This group has the same model description as all-but-local-approximation,

but the explanatory witness is longer (as opposed to just talking about1160

46



reaching terminal A, the trace takes you all the way to boarding the flight).

5. all-but-abstraction - the explanatory text includes 3211 characters.

6. None - this was the baseline group where the user was exposed to the

original model and the explanatory text includes 4596 characters.

We considered 30 participants per condition.1165

We measure the effectiveness of the explanation both on a subjective level

(do people find the explanation satisfying?) and on an objective one (do people

find the explanations helpful?). We measure the former by directly asking the

participants if they found the answer to the question (i.e., the explanation)

satisfying and the latter by checking whether they found correct answers and1170

how long they took to find those answers. Table 1, presents the results of the user

study. The table lists - the number of participants who submitted the answers

in time and provided the correct answer to the filter question, the percentage

of participants who said they were satisfied with the answer, the number of

participants who selected at least one correct answer, the average time taken by1175

participants who answered at least one correct answer (reported along with 95%

confidence interval) and the p-value obtained from a T-test comparing the time

taken by the group that considered all the transformations against each of the

other groups.

We ran a one-way ANOVA to compare the time taken by the six groups. Here,1180

the null hypothesis was whether there was a difference between the groups. We

found the p-value to be 0.00268959, which allows us to reject the null hypothesis

since it is much lower than the significance level we considered (α = 0.05). This

establishes that the different model transformation does, at the very least, change

the time taken.1185

Our first objective was to determine whether the transformation does provide

an advantage over providing the original model information. To test this, we

compare the None group against the others, particularly, with all. To start

with, we see that None took the most time per the average. This supports

our hypothesis about model simplification providing an advantage. The p-value1190
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calculated from the t-test (which can be roughly interpreted as the probability

that the samples come from the same population) is 0.00042, which is lower

than the standard significance levels (α = 0.05) used to establish statistical

significance. This means we can be confident that the data for the None group

is different from those drawn for all group. We also see a pretty drastic reduction1195

in the number of participants who got a correct answer. All these evidences

point to the fact that, from an objective point of view, the model simplification

transformation does provide an advantage.

On the other hand, we also see the highest level of satisfaction for this group.

One potential explanation for this result could be the fact that the participants1200

were impressed by the verbosity of the explanation, even though it may have

significantly slowed down and even mislead the participant. This results further

reinforces arguments made by various recent works (cf. [39]) that subjective

satisfaction may be a poor indicator of explanation effectiveness.

Now in regards to the second objective, we see how the removal of each1205

of the individual transformations has some impact on the time taken. Both

the groups where abstraction and local approximation were removed reported

statistically significant results in regard to the completion time. In terms of

the number of participants who correctly provided an answer, we saw the most

drastic drop in the group where problem decomposition was removed. Also, it’s1210

worth noting that the time taken by the participants isn’t simply a function

of the verbosity of the explanation. For example, while all-but-abstraction

is much more verbose than all-but-local-approximation, participants in the

former group took considerably less time than the latter.

Another interesting point is the difference between all-but-local-approximation1215

and all-but-decomposition. They are nearly identical in the size of the ex-

planation, but in one, you are asked to reason about a longer horizon (i.e.,

all-but-decomposition), and in the other, you have unnecessary actions that

don’t contribute to the goal being explained against (i.e., reaching the termi-

nal). We see that in all-but-local-approximation, a lot of people can solve1220

the problem but at the cost of much higher time (the p-value returned by the
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statistical test between the time taken under condition all and all-but-local-

approximation is again under the significance level of 0.05). We believe the

drop in the number of participants with correct answers could be explained by

the increased cognitive demand imposed by the need to reason over a larger1225

horizon. As such, the need to reason over a longer horizon must have caused

the participants to draw the wrong conclusions. This could again point to the

deficiency of verbosity as being the sole metric determining the effectiveness of

an explanation.

Overall Takeaways. The results show the utility of model simplifying trans-1230

formations. The transformations that made the biggest impact on the overall

time where all-but-abstraction and all-but-local-approximation. However,

all-but-local-decomposition resulted in a large drop in the number of users

who could find the correct answers. Also, the effectiveness of explanations isn’t

just reliant on model-description sizes or verbosity.1235

7.2. Synthetic Experiments

Here we will look at the ability of Stratified search to generate simplified

models. Here the performance of the simplified model is measured by the

time taken to solve the problem using standard solvers and the size of the

description. We considered three different solvers, a MAXPROB solver [29],1240

an implementation of LAO* solver [40] for SSP problems (for the cost queries)

and the fast-downward planner (ran with A* search and LM-cut heuristic) for

deterministic problems [41]. The problems were tested on problems from IPPC

problems from 2006 and 2008 [42] and some additional problems for unsolvability.

We tested problems corresponding to all three criteria classes. For criterion1245

corresponding to cost (i.e., κϵ1), we only consider domains which is guaranteed

to have proper policies (i.e., goal achievement probability is 1). For each domain

considered, we selected only problems that could be solved by the solvers within

30 minutes and was appropriate for the specific criteria (i.e. was unsolvable for

κϵ2 and had the max probability of less than 1 for κϵ3). Since we are unaware1250

of any unsolvability benchmarks (for criterion κϵ2) for probabilistic planning,
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Criterion Domain Problem

Count

Original

Prob Size

Average

Simplified

Prob Size

Average

Solver Time

of Original

Model

Average

Solver Time

of Simplified

Model

Average

Search Time

κϵ1
Blocksworld 5 67.4 25.4 1.647 1.22 96.81

Elevators 12 75.36 7.86 58.01 1.09 9.69

Zenotravel 5 81 26.2 534.06 1.26 11357.21

κϵ2
Bottleneck 12 145 116.25 60.38 1.62 56.09

κϵ3
Horizon

Constrained

Blocksworld

5 115 63.2 1.03 0.88 6476.61

Drive 15 421.53 51 0.06 0.13 1.28

Exploding

Blocksworld

9 77.44 19.11 53.59 0.17 11.64

Table 2: The results of the simulated experiments

we took a deterministic domain (from [43]) and turned them into probabilistic

domains by randomly changing some of the add effects to stochastic effect with

probability 0.5. For κϵ1) we created the query by considering the cost threshold

to be 5 (note the SSP solver ignores action cost) and for κϵ3) we used a probability1255

threshold of 1. We also used a constrained version of Blocksworld domain for

κϵ3 that was introduced by [29].

As clear from Table 2 shows, in every domain, the transformation results

in a smaller domain, and in all but the driver domain, it results in a shorter

solution time. Table 3 presents the average time taken by different types of1260

transformation across the various unique domains. One thing to note is that the

transformation that takes the most time is the problem decomposition. This is

because it involves finding potential landmarks and finding the one that meets

the required property from the partially ordered landmark. Table 2 also presents

the average time taken by the stratified search on each domain.1265

All experiments were run on an Ubuntu 14.04 machine with 12 cores and 64

GB RAM.
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Domain Transformation Average Time Taken (Secs)

Blocksworld

FF\Λ 0.00107

F∆ 0.002305

FL 0.000331

FD 9.518883

Elevator

FF\Λ 0.000712

F∆ 0.000758

FL 0.000282

FD 5.780696

Zenotravel

FF\Λ 0.001473

F∆ 0.001899

FL 0.000358

FD 3.277179

Bottleneck

FF\Λ 0.000781

F∆ 0.000637

FL 0.000412

FD 21.500897

Drive

FF\Λ 0.002310

F∆ 0.004960

FL 0.000334

FD 1.124373

Table 3: Average time taken for the individual transformations across unique domains.
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8. Related Works

While XAI as a field has been getting a lot of attention [44], explaining

sequential decisions is relatively under explored. Though there is a growing1270

recognition that explaining sequential decisions presents unique challenges. Par-

ticularly there has been a number of recent works that have looked at explaining

visual RL agents (for a recent survey for RL explanations in general please

refer to [45]). A lot of explanation works from the RL space seem to focus

either on feature attribution explanation (cf. [46, 47]) or generating policy1275

summaries (cf. [27, 48, 49, 50, 51]). Most of the works that try to answer ‘why’

a specific decision was made, focus on the choice of a specific action at a state

(while keeping the rest of the policy the same) (c.f [52, 22, 21]) rather than

contrasting the current policy/behavior over whole behaviors/alternate policies.

In regards to explanations for model-based sequential decisions, [53] presents a1280

rather comprehensive survey.

This directly connects to earlier works in model reconciliation explanation

[54, 55], where the goal of explanation is to provide humans with enough

model information that they can correctly evaluate the plan in question. In

fact, the setting studied in this paper corresponds to a model-reconciliation1285

explanation scenario where we assume the human has no previous information

about the system model. Model-reconciliation explanations focus on optimizing

for additional criteria like minimizing the amount of information to be provided

as part of the explanation. While still relevant in our case, we will leave

operationalization of such criteria as future work and focus on the basic tenet1290

that a person would find their explanatory queries resolved if their updated

model can support a justification for the query (in our case this correspond to

whether the updated model support an explanatory criterion κ) However, the

original model-reconciliation explanation method assumes that humans have the

adequate inferential capability to correctly use the given model to make perform1295

the necessary verification. This is not an assumption that is necessarily met in

practice as the model could be quite complex.
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As mentioned most work in model simplification for explanations comes

from deterministic planning community. With state abstraction being a popular

method investigated by [26] and [24] (many placed in the framework of model1300

reconciliation [54]). [23] also tried to use the ideas from these papers in the

context of FOND planning [56]. [24] also talks about finding the first unsolvable

subgoal. There are also works that try to map inscrutable black box models into

models expressed in terms of interpretable features or force RL algorithms to use

interpretable features. Representative works in this direction include [52, 11, 57].1305

Though unless these new features are hand-selected they don’t necessarily have to

lead to simpler models. In addition to XAI works, the transformation methods

used here also have roots in generating model approximations to speed up

planning and generating heuristics. Some relevant works include [58, 28, 29, 59]

for abstraction, [60] for landmarks, [31] for determinization.1310

One of the points just referred to, but not expanded upon was the use

of model class simplification transformation. One example is [61], where the

generate contrastive explanation generation for the oversubscription planning

problem. Here the explanation provides the various constraints between the

different possible objectives. We could see these works as performing model class1315

simplification, where they effectively convert a multi-objective planning problem

into a constraint satisfaction problem where there are specified constraints among

various objectives. A similar approach was also followed by [62, 63].

Table 4, presents some example works from the explanation for sequential-

decision-making literature that uses explanatory witnesses and the type of1320

information provided by each. Note that most works that use some form of

proof-based explanatory witness do so by skipping some information from the

proof. For example, to establish the choice of one action over another they may

report the Q values of the other actions without establishing why the Q values

of the other actions have those specific values. As such we have referred to the1325

information generated from these works as Abstract proof.

The model transformation discussed in this paper is connected to the general

notion of abstraction, which has a long history within computer science and
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Paper Type of Witness Actual Information

[64, 65] Existential Information Causal chains

[66] Proof Discusses providing plan trace and failure points

of the foils

[24] Abstract Proof Unreachable subgoal

[67] Counterfactual Information A solvable planning problem.

[22] Abstract Proof Reachability information under current policy

[68] Existential Information Provides action factored differential values - De-

scribes how much better the actions are in the

next state given the current optimal action in

comparison to the other actions.

[69] Existential Information They contrast the outcomes of two actions over

an action influence diagram, which is a modified

form of structural causal model

[70, 71] Existential Information Produces a plan that satisfy the user specified

alternative

[52] Abstract Proof The preference of one action over another is repre-

sented in terms of some accumulation of the policy

execution after the current action (as opposed to

the foil case)

[21] Abstract Proof The model consists of an interpretable value func-

tion, where the value is decomposed into multiple

human interpretable components. Thus the auxil-

iary information consists of comparing the values

across these components.

[72] Existential Information Here explanation includes opportunity chains, i.e.,

information derived from a decision-tree based

representation of policies and also the information

part of [69]

[57] Existential Information Describes the negative outcomes that occur as

part of the foil

[73] Abstract Proof Provides the closest plan that may be feasible,

conflict set and most likely set of actions that can

be satisfied

[74] Existential Information If the queried formula (ϕ) could have been

achieved, it generates a trajectory that satisfied

ϕ and presents the outcome of following that tra-

jectory

[75] Existential Information Counterfactual states

Table 4: Some examples of Explanatory Witness used in the literature.

54



has been widely recognized as a fundamental process within the field [76]. Each

of our transformations is effectively mapping one transition system to another.1330

Such problems have been studied in the context of multiple fields including

formal methods [77]. In many of these cases, the mapping may be selected

so as to enforce certain properties by ensuring the mapping is a bisimulation

[78], homomorphism [79], etc. Control-theoretic literature also has studied state

aggregation as investigated within this paper [80]. Per [76], one of the earliest1335

planning systems to use abstractions was the ABSTRIPS [81] system which

again connects to the state abstraction presented here. Since then planning

methods have considered multiple state-based [82] and temporal abstractions

[83][84].

9. Conclusion and Discussion1340

The paper presents a framework for generating a simplified model represen-

tation for the purposes of explanation. In particular, we look at transformations

over model descriptions that preserve explanatory criteria. We focus on explain-

ing policies generated using (a) factored MDP models that satisfy P assumption

and (b) with respect to some contrastive query. As part of defining this frame-1345

work, we also establish the space of possible explanatory criteria that can be

queried by the user in this setting, perform analysis over some general class of

transformations, and formalize the idea of explanatory witness. We perform user

studies to validate the specific transformations studied in the paper. Our user

study results show that the transformations do help improve the comprehensibil-1350

ity of the explanations. However, we can’t just rely on computational intuitions

to decide the most useful transformations. Thus, more work needs to be done

to identify these transformations’ strengths and develop novel transformations

better suited for explanations.
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July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,

PMLR, 2018, pp. 1787–1796.
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Appendix

A1: Symbol Glossary

Symbol Description

M MDP model

S Set of states

A Set of actions

P Depending on the context, it is either the transition function or the probability of

reaching the goal (which is one of the optimization objectives)

C Cost of executing an action in a state

I The initial state, where I ∈ S

G The set of goal states, G ⊆ S

J Expected total cost; J∗ represents the optimal expected total cost, and Jπ the

value for a policy π

π,Π A policy and set of policies respectively

t A state action trace

MD A PPDDL description of an MDP model

FD A set of propositional state factors

AD A set of action descriptions

preci Preconditions of an action ai

Ei Effect set for an action, each effect takes the form ⟨addj
i , del

j
i , p

j
i , c

j
i ⟩, where addj

i

and delji are the add and delete effect corresponding to the j-th effect. pj
i gives the

likelihood of this effect happening and cji gives the cost associated with the effect

MR∗
, MD∗

System’s underlying model and its corresponding description

Q The explanatory query

κ An optimization threshold

Compsys(,,) CompH(,) The computational capability of the system and the human respectively

F Individual transformation function, FF\Λ - projective state abstraction function,

F∆ - determinization function; FD - problem decomposition function and FL -

local approximation function

Λ A subset of the state propositions (i.e. Λ ⊆ FD)

T Bellman operator

F A set of transformation functions.

T A sequence of transformation functions

Table 5: A summary of all the symbols and notations used in the paper.

A2: Domain Used for User Study1620

(define (domain get_to_sf)

(:requirements :probabilistic-effects :conditional-effects

:negative-preconditions
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:rewards :equality :typing)

(:types elevator floor pos coin)1625

(:predicates (at_home) (has_cash_voucher)

(on_board_express_train) (on_board_regular_train)

(at_downtown_station) (at_terminal_A) (at_city_station) (checked_in)

(luggaged_checked_in) (at_deignated_gate) (board_flight) (gate_confirmed))

1630

(:action walk_to_train_station

:parameters ()

:precondition (and (at_home) )

:effect (and

(decrease reward 15)1635

(at_city_station)

(not (at_home))

)

)

1640

(:action take_taxi_to_downtown

:parameters ()

:precondition (and (at_home) (has_cash_voucher) )

:effect (and

(decrease reward 15)1645

(at_downtown_station)

(not (at_home))

(not (has_cash_voucher))

)

)1650

(:action catch_train_at_city_station

:parameters ()

:precondition (and (at_city_station))
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:effect (and (decrease reward 25)1655

(not (at_city_station))

(probabilistic 1/2 (and (on_board_express_train) )

1/4 (and (on_board_regular_train)))

)1660

)

(:action ride_express_train

:parameters ()

:precondition (and (on_board_express_train))1665

:effect (and

(decrease reward 50)

(probabilistic 1/2 (and (at_downtown_station)

(not (on_board_express_train))))

)1670

)

(:action ride_regular_train

:parameters ()1675

:precondition (and (on_board_regular_train))

:effect (and

(decrease reward 85)

(probabilistic 1/4 (and (at_downtown_station)

(not (on_board_regular_train))))1680

)

)

(:action catch_shuttle_from_downtown_station_to_terminal_a1685
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:parameters ()

:precondition (and (at_downtown_station) (has_cash_voucher))

:effect (and (decrease reward 15)

(not (has_cash_voucher))

(not (at_downtown_station))1690

(at_terminal_a))

)

1695

(:action check_in_terminal_A

:parameters ()

:precondition (and (at_terminal_A))

:effect (and (decrease reward 15)

(not (has_cash_voucher))1700

(checked_in))

)

1705

(:action check_in_luggage

:parameters ()

:precondition (and (at_terminal_A) (checked_in))

:effect (and (decrease reward 15)

(luggaged_checked_in))1710

)

(:action wait_for_Gate_confirmation1715

:parameters ()
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:precondition (and (at_terminal_A) (checked_in))

:effect (and (decrease reward 15)

(probabilistic 1/2

(and (gate_confirmed)))1720

))

1725

(:action go_through_security_clearance_to_gate

;; Possible place to add more stochasticity

:parameters ()

:precondition (and (at_terminal_A) (luggaged_checked_in)

(gate_confirmed) (checked_in))1730

:effect (and (decrease reward 5)

(at_deignated_gate))

)

1735

(:action board_flight

:parameters ()

:precondition (and (at_deignated_gate))1740

:effect (and (decrease reward 5)

(board_flight))

)

)1745
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Template Used in Translating PDDL to Natural Language

Each proposition in the domain is converted into an English sentence using

the following rules

If the proposition starts with ‘has’, it get converted into

"The person has a " + proposition string with ’has’ removed and1750

the underscore is replaced with space

else

"The person is " + proposition string with underscore is replaced

with space

For each action, we create a string of the form1755

Action: <Action name string>

If the following facts are true:

<string of preconditions>

Doing this will cause the following facts to be True:

<string of add effects>1760

Doing this will cause the following facts to be False:

<string of delete effects>

Time taken:

It will take you <cost> mins to do it

For probabilistic effects, you add the string “with probability p”, where p is1765

replaced with actual probability value.

Readers can view the actual text shown to the study participant in the fol-

lowing GitHub repo: https://github.com/HAPILab/model_simplification_

files/tree/main/user_study_pdfs.
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